Merge branch 'master' of github.com:failedxyz/easyctf
This commit is contained in:
commit
00ed60e2dd
3 changed files with 54 additions and 0 deletions
11
library/generator.py
Normal file
11
library/generator.py
Normal file
|
@ -0,0 +1,11 @@
|
||||||
|
import random
|
||||||
|
C = input()
|
||||||
|
|
||||||
|
if C==1:
|
||||||
|
print 1
|
||||||
|
elif C==2:
|
||||||
|
print 2
|
||||||
|
elif C==3 or C==4:
|
||||||
|
print random.randint(3, 100)
|
||||||
|
else:
|
||||||
|
print random.randint(2**(C**3-1), 2**(C**3))
|
39
library/grader.py
Normal file
39
library/grader.py
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
x = input() + 1
|
||||||
|
|
||||||
|
mat = [[0,0,1,0],[0,1,0,1],[1,0,2,0],[0,2,0,1]]
|
||||||
|
mod = 10**9+7
|
||||||
|
|
||||||
|
def egcd(a, b):
|
||||||
|
if a == 0:
|
||||||
|
return (b, 0, 1)
|
||||||
|
else:
|
||||||
|
g, y, x = egcd(b % a, a)
|
||||||
|
return (g, x - (b // a) * y, y)
|
||||||
|
|
||||||
|
def modinv(a, m):
|
||||||
|
g, x, y = egcd(a, m)
|
||||||
|
if g != 1:
|
||||||
|
raise Exception('modular inverse does not exist')
|
||||||
|
else:
|
||||||
|
return x % m
|
||||||
|
|
||||||
|
def matmult(mtx_a, mtx_b, mod):
|
||||||
|
tpos_b = zip( *mtx_b)
|
||||||
|
rtn = [[ sum( ea*eb for ea,eb in zip(a,b))%mod for b in tpos_b] for a in mtx_a]
|
||||||
|
return rtn
|
||||||
|
|
||||||
|
def trace(A):
|
||||||
|
return sum(A[j][j] for j in range(len(A)))
|
||||||
|
|
||||||
|
def matpow(A, p):
|
||||||
|
ret = A
|
||||||
|
for bit in bin(p)[3:]:
|
||||||
|
ret = matmult(ret, ret, mod)
|
||||||
|
if bit=='1':
|
||||||
|
ret = matmult(ret, A, mod)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
inv4 = modinv(4, mod)
|
||||||
|
ans = trace(matpow(mat, x))%mod
|
||||||
|
ans = (ans * inv4)% mod
|
||||||
|
print ans
|
|
@ -28,3 +28,7 @@ Output:
|
||||||
```
|
```
|
||||||
1
|
1
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Explanation:
|
||||||
|
|
||||||
|
If you understand the word 'ok', you can understand the word 'blah'. If you understand 'ok' and 'blah', you can understand 'iz'. 'iz', and 'ok' lets you understand 'yiq'. 'yiq', 'iz', and 'blah' let you understand 'arggiq'.
|
||||||
|
|
Loading…
Reference in a new issue