45 lines
1.1 KiB
Python
45 lines
1.1 KiB
Python
# Very easy problem. Compute a few values w/ brute force or something, then check OEIS.
|
|
# Part of: https://oeis.org/A001333
|
|
# Tells us: f(n) = (1/4) * Trace( [[0,0,1,0],[0,1,0,1],[1,0,2,0],[0,2,0,1]] )
|
|
# just write a program to compute this quickly
|
|
# this sol takes something like ~O(log n) i think?
|
|
|
|
x = input() + 1
|
|
|
|
mat = [[0,0,1,0],[0,1,0,1],[1,0,2,0],[0,2,0,1]]
|
|
mod = 10**9+7
|
|
|
|
def egcd(a, b):
|
|
if a == 0:
|
|
return (b, 0, 1)
|
|
else:
|
|
g, y, x = egcd(b % a, a)
|
|
return (g, x - (b // a) * y, y)
|
|
|
|
def modinv(a, m):
|
|
g, x, y = egcd(a, m)
|
|
if g != 1:
|
|
raise Exception('modular inverse does not exist')
|
|
else:
|
|
return x % m
|
|
|
|
def matmult(mtx_a, mtx_b, mod):
|
|
tpos_b = zip( *mtx_b)
|
|
rtn = [[ sum( ea*eb for ea,eb in zip(a,b))%mod for b in tpos_b] for a in mtx_a]
|
|
return rtn
|
|
|
|
def trace(A):
|
|
return sum(A[j][j] for j in range(len(A)))
|
|
|
|
def matpow(A, p):
|
|
ret = A
|
|
for bit in bin(p)[3:]:
|
|
ret = matmult(ret, ret, mod)
|
|
if bit=='1':
|
|
ret = matmult(ret, A, mod)
|
|
return ret
|
|
|
|
inv4 = modinv(4, mod)
|
|
ans = trace(matpow(mat, x))%mod
|
|
ans = (ans * inv4)% mod
|
|
print ans
|