Spectral/cohomology/serre.hlean

406 lines
16 KiB
Text
Raw Permalink Normal View History

import ..algebra.spectral_sequence ..spectrum.trunc .basic
2017-06-29 14:48:43 +00:00
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
cohomology group sigma unit is_conn prod
set_option pp.binder_types true
2017-06-29 14:48:43 +00:00
/- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/
namespace pointed
2017-06-29 14:48:43 +00:00
definition postnikov_map [constructor] (A : Type*) (n : ℕ₋₂) : ptrunc (n.+1) A →* ptrunc n A :=
2017-07-05 19:40:15 +00:00
ptrunc.elim (n.+1) (ptr n A)
2017-06-29 14:48:43 +00:00
definition ptrunc_functor_postnikov_map {A B : Type*} (n : ℕ₋₂) (f : A →* B) :
ptrunc_functor n f ∘* postnikov_map A n ~* ptrunc.elim (n.+1) (!ptr ∘* f) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, reflexivity },
{ reflexivity }
end
section
open nat group
2017-06-29 14:48:43 +00:00
definition pfiber_postnikov_map (A : Type*) (n : ) :
pfiber (postnikov_map A n) ≃* EM_type A (n+1) :=
begin
symmetry, apply EM_type_pequiv,
{ symmetry, refine _ ⬝g ghomotopy_group_ptrunc (n+1) A,
exact chain_complex.LES_isomorphism_of_trivial_cod _ _
(trivial_homotopy_group_of_is_trunc _ (self_lt_succ n))
(trivial_homotopy_group_of_is_trunc _ (le_succ _)) },
{ apply is_conn_fun_trunc_elim, apply is_conn_fun_tr },
{ have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc,
have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc,
2018-09-20 14:03:59 +00:00
exact is_trunc_pfiber _ _ _ _ }
2017-06-29 14:48:43 +00:00
end
end
definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) :
psquare (postnikov_map A n) (postnikov_map B n)
(ptrunc_functor (n.+1) f) (ptrunc_functor n f) :=
!ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹*
definition is_equiv_postnikov_map (A : Type*) {n k : ℕ₋₂} [HA : is_trunc k A] (H : k ≤ n) :
is_equiv (postnikov_map A n) :=
begin
apply is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc_of_is_trunc (trunc_index.le.step H) H HA),
intro x, induction x, reflexivity
end
2017-06-29 14:48:43 +00:00
definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') :
trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') :=
by induction p; reflexivity
definition ap1_postnikov_map (A : Type*) (n : ℕ₋₂) :
psquare (Ω→ (postnikov_map A (n.+1))) (postnikov_map (Ω A) n)
(loop_ptrunc_pequiv (n.+1) A) (loop_ptrunc_pequiv n A) :=
have psquare (postnikov_map (Ω A) n) (Ω→ (postnikov_map A (n.+1)))
(loop_ptrunc_pequiv (n.+1) A)⁻¹ᵉ* (loop_ptrunc_pequiv n A)⁻¹ᵉ*,
begin
refine _ ⬝* !ap1_ptrunc_elim⁻¹*, apply pinv_left_phomotopy_of_phomotopy,
fapply phomotopy.mk,
{ intro x, induction x with p, exact !encode_ap1_gen_tr⁻¹ },
{ reflexivity }
end,
this⁻¹ᵛ*
end pointed open pointed
namespace spectrum
2017-07-05 19:40:15 +00:00
definition postnikov_smap [constructor] (X : spectrum) (k : ) :
strunc k X →ₛ strunc (k - 1) X :=
strunc_elim (str (k - 1) X) (is_strunc_strunc_pred X k)
2017-07-05 19:40:15 +00:00
definition postnikov_map_pred (A : Type*) (n : ℕ₋₂) :
ptrunc n A →* ptrunc (trunc_index.pred n) A :=
begin cases n with n, exact !pid, exact postnikov_map A n end
2017-07-05 19:40:15 +00:00
definition pfiber_postnikov_map_pred (A : Type*) (n : ) :
pfiber (postnikov_map_pred A n) ≃* EM_type A n :=
begin
2017-07-05 19:40:15 +00:00
cases n with n,
apply pfiber_pequiv_of_is_contr, apply is_contr_ptrunc_minus_one,
exact pfiber_postnikov_map A n
end
definition pfiber_postnikov_map_pred' (A : spectrum) (n k l : ) (p : n + k = l) :
pfiber (postnikov_map_pred (A k) (maxm2 l)) ≃* EM_spectrum (πₛ[n] A) l :=
begin
cases l with l l,
{ refine pfiber_postnikov_map_pred (A k) l ⬝e* _,
exact EM_type_pequiv_EM A p },
2018-09-11 15:06:46 +00:00
{ refine pequiv_of_is_contr _ _ _ _, apply is_contr_pfiber_pid,
2017-07-05 19:40:15 +00:00
apply is_contr_EM_spectrum_neg }
end
2017-07-05 19:40:15 +00:00
definition psquare_postnikov_map_ptrunc_elim (A : Type*) {n k l : ℕ₋₂} (H : is_trunc n (ptrunc k A))
(p : n = l.+1) (q : k = l) :
psquare (ptrunc.elim n (ptr k A)) (postnikov_map A l)
(ptrunc_change_index p A) (ptrunc_change_index q A) :=
begin
induction q, cases p,
refine _ ⬝pv* pvrfl,
apply ptrunc_elim_phomotopy2,
reflexivity
end
definition postnikov_smap_postnikov_map (A : spectrum) (n k l : ) (p : n + k = l) :
psquare (postnikov_smap A n k) (postnikov_map_pred (A k) (maxm2 l))
(ptrunc_maxm2_change_int p (A k)) (ptrunc_maxm2_pred (A k) (ap pred p⁻¹ ⬝ add.right_comm n k (- 1))) :=
begin
cases l with l,
{ cases l with l, apply phomotopy_of_is_contr_cod_pmap, apply is_contr_ptrunc_minus_one,
2017-07-05 19:40:15 +00:00
refine psquare_postnikov_map_ptrunc_elim (A k) _ _ _ ⬝hp* _,
exact ap maxm2 (add.right_comm n (- 1) k ⬝ ap pred p ⬝ !pred_succ),
apply ptrunc_maxm2_pred_nat },
{ apply phomotopy_of_is_contr_cod_pmap, apply is_trunc_trunc }
2017-07-05 19:40:15 +00:00
end
definition sfiber_postnikov_smap_pequiv (A : spectrum) (n : ) (k : ) :
sfiber (postnikov_smap A n) k ≃* ssuspn n (EM_spectrum (πₛ[n] A)) k :=
2017-07-05 19:40:15 +00:00
proof
pfiber_pequiv_of_square _ _ (postnikov_smap_postnikov_map A n k (n + k) idp) ⬝e*
pfiber_postnikov_map_pred' A n k _ idp ⬝e*
pequiv_ap (EM_spectrum (πₛ[n] A)) (add.comm n k)
2017-07-05 19:40:15 +00:00
qed
open exact_couple
section atiyah_hirzebruch
parameters {X : Type*} (Y : X → spectrum) (s₀ : ) (H : Πx, is_strunc s₀ (Y x))
include H
definition atiyah_hirzebruch_exact_couple : exact_couple r Z2 :=
@exact_couple_sequence (λs, spi X (λx, strunc s (Y x)))
(λs, spi_compose_left (λx, postnikov_smap (Y x) s))
-- include H
definition atiyah_hirzebruch_ub ⦃s n : ℤ⦄ (Hs : s ≤ n - 1) :
is_contr (πₛ[n] (spi X (λx, strunc s (Y x)))) :=
begin
refine trivial_shomotopy_group_of_is_strunc _ _ (lt_of_le_sub_one Hs),
apply is_strunc_spi, intro x, exact is_strunc_strunc _ _
end
definition atiyah_hirzebruch_lb' ⦃s n : ℤ⦄ (Hs : s ≥ s₀ + 1) :
is_equiv (spi_compose_left (λx, postnikov_smap (Y x) s) n) :=
begin
refine is_equiv_of_equiv_of_homotopy
(ppi_pequiv_right (λx, ptrunc_pequiv_ptrunc_of_is_trunc _ _ (H x n))) _,
{ intro x, apply maxm2_monotone, apply add_le_add_right, exact le.trans !le_add_one Hs },
{ intro x, apply maxm2_monotone, apply add_le_add_right, exact le_sub_one_of_lt Hs },
intro f, apply eq_of_phomotopy,
apply pmap_compose_ppi_phomotopy_left, intro x,
fapply phomotopy.mk,
{ refine @trunc.rec _ _ _ _ _,
{ intro x, apply is_trunc_eq,
assert H3 : maxm2 (s - 1 + n) ≤ (maxm2 (s + n)).+1,
{ refine trunc_index.le_succ (maxm2_monotone (le.trans (le_of_eq !add.right_comm)
!sub_one_le)) },
exact @is_trunc_of_le _ _ _ H3 !is_trunc_trunc },
intro a, reflexivity },
reflexivity
end
definition atiyah_hirzebruch_lb ⦃s n : ℤ⦄ (Hs : s ≥ s₀ + 1) :
is_equiv (πₛ→[n] (spi_compose_left (λx, postnikov_smap (Y x) s))) :=
begin
apply is_equiv_homotopy_group_functor, apply atiyah_hirzebruch_lb', exact Hs
end
definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple :=
is_bounded_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
definition atiyah_hirzebruch_convergence1 :
(λn s, πₛ[n] (sfiber (spi_compose_left (λx, postnikov_smap (Y x) s)))) ⟹ᵍ
(λn, πₛ[n] (spi X (λx, strunc s₀ (Y x)))) :=
convergent_exact_couple_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
definition atiyah_hirzebruch_convergence2 :
(λn s, opH^-(n-s)[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x]) :=
convergent_exact_couple_g_isomorphism
(convergent_exact_couple_negate_abutment atiyah_hirzebruch_convergence1)
begin
intro n s,
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
refine _ ⬝g !shomotopy_group_ssuspn,
apply shomotopy_group_isomorphism_of_pequiv n, intro k,
2017-07-20 21:04:21 +00:00
refine !pfiber_pppi_compose_left ⬝e* _,
exact ppi_pequiv_right (λx, sfiber_postnikov_smap_pequiv (Y x) s k)
end
begin
intro n,
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ !neg_neg)⁻¹ᵍ,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
exact ppi_pequiv_right (λx, ptrunc_pequiv (maxm2 (s₀ + k)) (Y x k)),
end
open prod.ops
definition atiyah_hirzebruch_base_change [constructor] : ag ×ag ag ≃g ag ×ag ag :=
begin
fapply group.isomorphism.mk,
{ fapply group.homomorphism.mk, exact (λpq, (-(pq.1 + pq.2), -pq.2)),
intro pq pq',
induction pq with p q, induction pq' with p' q', esimp,
exact prod_eq (ap neg !add.comm4 ⬝ !neg_add) !neg_add },
{ fapply adjointify,
{ exact (λns, (ns.2 - ns.1, -ns.2)) },
{ intro ns, esimp,
exact prod_eq (ap neg (!add.comm ⬝ !neg_add_cancel_left) ⬝ !neg_neg) !neg_neg },
{ intro pq, esimp,
exact prod_eq (ap (λx, _ + x) !neg_neg ⬝ !add.comm ⬝ !add_neg_cancel_right) !neg_neg }}
end
definition atiyah_hirzebruch_convergence :
(λp q, opH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x]) :=
begin
note z := convergent_exact_couple_reindex atiyah_hirzebruch_convergence2 atiyah_hirzebruch_base_change,
refine convergent_exact_couple_g_isomorphism z _ (by intro n; reflexivity),
intro p q,
apply parametrized_cohomology_change_int,
esimp,
refine !neg_neg_sub_neg ⬝ !add_neg_cancel_right
end
definition atiyah_hirzebruch_spectral_sequence :
convergent_spectral_sequence_g (λp q, opH^p[(x : X), πₛ[-q] (Y x)]) (λn, pH^n[(x : X), Y x]) :=
begin
apply convergent_spectral_sequence_of_exact_couple atiyah_hirzebruch_convergence,
{ intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg },
{ reflexivity }
end
2018-10-03 21:14:37 +00:00
/-
to unfold a field of atiyah_hirzebruch_spectral_sequence:
esimp [atiyah_hirzebruch_spectral_sequence, convergent_spectral_sequence_of_exact_couple,
atiyah_hirzebruch_convergence, convergent_exact_couple_g_isomorphism,
convergent_exact_couple_isomorphism, convergent_exact_couple_reindex,
atiyah_hirzebruch_convergence2, convergent_exact_couple_negate_abutment,
atiyah_hirzebruch_convergence1, convergent_exact_couple_sequence],
-/
definition AHSS_deg_d (r : ) :
convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r =
(r + 2, -(r + 1)) :=
by reflexivity
definition AHSS_lb (n : ) :
convergent_spectral_sequence.lb atiyah_hirzebruch_spectral_sequence n = -s₀ :=
by reflexivity
-- open nat
-- definition AHSS_ub (n : ) :
-- is_built_from.n₀ (convergent_spectral_sequence.HDinf atiyah_hirzebruch_spectral_sequence n) =
-- max0 (s₀ + n) + 1 :=
-- begin
-- -- refine refl (max (max0 (- - - -s₀ - (-(- -s₀ - -(s₀ - -n + -s₀) + - - -s₀) - 1)))
-- -- (max0 (max (s₀ + 1 - - - - -s₀) (s₀ + 1 - - - - -s₀)))) ⬝ _,
-- -- exact ap011 max (ap max0 (ap011 add (!neg_neg ⬝ !neg_neg) _)) _ ⬝ _,
-- exact sorry
-- end
2018-10-03 21:14:37 +00:00
end atiyah_hirzebruch
2017-07-03 12:37:02 +00:00
section unreduced_atiyah_hirzebruch
definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : )
(H : Πx, is_strunc s₀ (Y x)) :
(λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, upH^n[(x : X), Y x]) :=
convergent_exact_couple_g_isomorphism
2017-07-03 12:37:02 +00:00
(@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H))
begin
intro p q, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ,
apply ordinary_parametrized_cohomology_isomorphism_right,
intro x,
apply shomotopy_group_add_point_spectrum
2017-07-03 12:37:02 +00:00
end
begin
intro n, reflexivity
2017-07-03 12:37:02 +00:00
end
definition unreduced_atiyah_hirzebruch_spectral_sequence {X : Type} (Y : X → spectrum) (s₀ : )
(H : Πx, is_strunc s₀ (Y x)) :
convergent_spectral_sequence_g (λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) (λn, upH^n[(x : X), Y x]) :=
begin
apply convergent_spectral_sequence_of_exact_couple (unreduced_atiyah_hirzebruch_convergence Y s₀ H),
{ intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg },
{ reflexivity }
end
2017-07-03 12:37:02 +00:00
end unreduced_atiyah_hirzebruch
section serre
universe variable u
variables {X B : Type.{u}} (b₀ : B) (F : B → Type) (f : X → B)
(Y : spectrum) (s₀ : ) (H : is_strunc s₀ Y)
include H
definition serre_convergence :
(λp q, uopH^p[(b : B), uH^q[F b, Y]]) ⟹ᵍ (λn, uH^n[Σ(b : B), F b, Y]) :=
proof
convergent_exact_couple_g_isomorphism
(unreduced_atiyah_hirzebruch_convergence
(λx, sp_ucotensor (F x) Y) s₀
(λx, is_strunc_sp_ucotensor s₀ (F x) H))
begin
intro p q,
refine unreduced_ordinary_parametrized_cohomology_isomorphism_right _ p,
intro x,
exact (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ
end
begin
intro n,
refine unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi _ !neg_neg ⬝g _,
refine _ ⬝g (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
exact (sigma_pumap F (Y k))⁻¹ᵉ*
end
qed
definition serre_spectral_sequence :
convergent_spectral_sequence_g (λp q, uopH^p[(b : B), uH^q[F b, Y]]) (λn, uH^n[Σ(b : B), F b, Y]) :=
begin
apply convergent_spectral_sequence_of_exact_couple (serre_convergence F Y s₀ H),
{ intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg },
{ reflexivity }
end
definition serre_convergence_map :
(λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) ⟹ᵍ (λn, uH^n[X, Y]) :=
proof
convergent_exact_couple_g_isomorphism
(serre_convergence (fiber f) Y s₀ H)
begin intro p q, reflexivity end
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
qed
definition serre_spectral_sequence_map :
convergent_spectral_sequence_g (λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) (λn, uH^n[X, Y]) :=
begin
apply convergent_spectral_sequence_of_exact_couple (serre_convergence_map f Y s₀ H),
{ intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg },
{ reflexivity }
end
definition serre_convergence_of_is_conn (H2 : is_conn 1 B) :
(λp q, uoH^p[B, uH^q[F b₀, Y]]) ⟹ᵍ (λn, uH^n[Σ(b : B), F b, Y]) :=
proof
convergent_exact_couple_g_isomorphism
(serre_convergence F Y s₀ H)
begin intro p q, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end
begin intro n, reflexivity end
qed
definition serre_spectral_sequence_of_is_conn (H2 : is_conn 1 B) :
convergent_spectral_sequence_g (λp q, uoH^p[B, uH^q[F b₀, Y]]) (λn, uH^n[Σ(b : B), F b, Y]) :=
begin
apply convergent_spectral_sequence_of_exact_couple (serre_convergence_of_is_conn b₀ F Y s₀ H H2),
{ intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg },
{ reflexivity }
end
definition serre_convergence_map_of_is_conn (H2 : is_conn 1 B) :
(λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^n[X, Y]) :=
proof
convergent_exact_couple_g_isomorphism
(serre_convergence_of_is_conn b₀ (fiber f) Y s₀ H H2)
begin intro p q, reflexivity end
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
qed
2018-10-25 01:19:26 +00:00
definition serre_spectral_sequence_map_of_is_conn' (H2 : is_conn 1 B) :
convergent_spectral_sequence_g (λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) (λn, uH^n[X, Y]) :=
begin
apply convergent_spectral_sequence_of_exact_couple (serre_convergence_map_of_is_conn b₀ f Y s₀ H H2),
{ intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg },
{ reflexivity }
end
2018-10-25 01:19:26 +00:00
definition serre_spectral_sequence_map_of_is_conn (H2 : is_conn 1 B) :
convergent_spectral_sequence_g (λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) (λn, uH^n[X, Y]) :=
⦃convergent_spectral_sequence,
deg_d := λ(r : ), (r + 2, -(r + 1)),
lb := λx, -s₀,
serre_spectral_sequence_map_of_is_conn' b₀ f Y s₀ H H2⦄
omit H
definition is_normal_serre_spectral_sequence_map_of_is_conn (H' : is_strunc 0 Y)
(H2 : is_conn 1 B) :
spectral_sequence.is_normal (serre_spectral_sequence_map_of_is_conn b₀ f Y 0 H' H2) :=
begin
apply spectral_sequence.is_normal.mk,
{ intro p q Hp, exact is_contr_ordinary_cohomology_of_neg _ _ Hp },
{ intro p q Hp, apply is_contr_ordinary_cohomology,
apply is_contr_cohomology_of_is_contr_spectrum,
exact is_contr_of_is_strunc _ _ H' Hp },
{ intro r, reflexivity },
end
end serre
end spectrum