Spectral/property.hlean

333 lines
11 KiB
Text
Raw Permalink Normal View History

2017-06-26 16:39:40 +00:00
/-
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/
import types.trunc .logic .move_to_lib
2017-06-26 16:39:40 +00:00
open funext eq trunc is_trunc logic
definition property (X : Type) := X → Prop
namespace property
variable {X : Type}
/- membership and subproperty -/
definition mem (x : X) (a : property X) := a x
infix ∈ := mem
notation a ∉ b := ¬ mem a b
theorem ext {X : Type} {a b : property X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
eq_of_homotopy (take x, Prop_eq (H x))
2017-06-26 16:39:40 +00:00
definition subproperty (a b : property X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _
infix ⊆ := subproperty
definition superproperty (s t : property X) : Prop := t ⊆ s
infix ⊇ := superproperty
theorem subproperty.refl (a : property X) : a ⊆ a := take x, assume H, H
theorem subproperty.trans {a b c : property X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax)
theorem subproperty.antisymm {X : Type} {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
2017-06-26 16:39:40 +00:00
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
-- an alterantive name
/-
theorem eq_of_subproperty_of_subproperty {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subproperty.antisymm h₁ h₂
-/
2017-06-30 20:22:53 +00:00
theorem exteq_of_subproperty_of_subproperty {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) :
∀ ⦃x⦄, x ∈ a ↔ x ∈ b :=
λ x, iff.intro (λ h, h₁ h) (λ h, h₂ h)
2017-06-26 16:39:40 +00:00
theorem mem_of_subproperty_of_mem {s₁ s₂ : property X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ _ h₂
/- empty property -/
definition empty : property X := λx, false
notation `∅` := property.empty
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, false.elim H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
/-
theorem eq_empty_of_forall_not_mem {s : property X} (H : ∀ x, x ∉ s) : s = ∅ :=
ext (take x, iff.intro
(assume xs, absurd xs (H x))
(assume xe, absurd xe (not_mem_empty x)))
-/
theorem ne_empty_of_mem {s : property X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end
theorem empty_subproperty (s : property X) : ∅ ⊆ s :=
take x, assume H, false.elim H
/-theorem eq_empty_of_subproperty_empty {s : property X} (H : s ⊆ ∅) : s = ∅ :=
subproperty.antisymm H (empty_subproperty s)
theorem subproperty_empty_iff (s : property X) : s ⊆ ∅ ↔ s = ∅ :=
iff.intro eq_empty_of_subproperty_empty (take xeq, by rewrite xeq; apply subproperty.refl ∅)
-/
/- universal property -/
definition univ : property X := λx, true
theorem mem_univ (x : X) : x ∈ univ := trivial
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
theorem empty_ne_univ [h : inhabited X] : (empty : property X) ≠ univ :=
assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X)))
theorem subproperty_univ (s : property X) : s ⊆ univ := λ x H, trivial
/-
theorem eq_univ_of_univ_subproperty {s : property X} (H : univ ⊆ s) : s = univ :=
eq_of_subproperty_of_subproperty (subproperty_univ s) H
-/
/-
theorem eq_univ_of_forall {s : property X} (H : ∀ x, x ∈ s) : s = univ :=
ext (take x, iff.intro (assume H', trivial) (assume H', H x))
-/
2017-08-21 21:05:59 +00:00
/- union -/
definition union (a b : property X) : property X := λx, x ∈ a x ∈ b
notation a b := union a b
theorem mem_union_left {x : X} {a : property X} (b : property X) : x ∈ a → x ∈ a b :=
assume h, or.inl h
theorem mem_union_right {x : X} {b : property X} (a : property X) : x ∈ b → x ∈ a b :=
assume h, or.inr h
theorem mem_unionl {x : X} {a b : property X} : x ∈ a → x ∈ a b :=
assume h, or.inl h
theorem mem_unionr {x : X} {a b : property X} : x ∈ b → x ∈ a b :=
assume h, or.inr h
theorem mem_or_mem_of_mem_union {x : X} {a b : property X} (H : x ∈ a b) : x ∈ a x ∈ b := H
theorem mem_union.elim {x : X} {a b : property X} {P : Prop}
(H₁ : x ∈ a b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P :=
or.elim H₁ H₂ H₃
theorem mem_union_iff (x : X) (a b : property X) : x ∈ a b ↔ x ∈ a x ∈ b := !iff.refl
theorem mem_union_eq (x : X) (a b : property X) : x ∈ a b = (x ∈ a x ∈ b) := rfl
--theorem union_self (a : property X) : a a = a :=
--ext (take x, !or_self)
--theorem union_empty (a : property X) : a ∅ = a :=
--ext (take x, !or_false)
--theorem empty_union (a : property X) : ∅ a = a :=
--ext (take x, !false_or)
--theorem union_comm (a b : property X) : a b = b a :=
--ext (take x, or.comm)
--theorem union_assoc (a b c : property X) : (a b) c = a (b c) :=
--ext (take x, or.assoc)
--theorem union_left_comm (s₁ s₂ s₃ : property X) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
--!left_comm union_comm union_assoc s₁ s₂ s₃
--theorem union_right_comm (s₁ s₂ s₃ : property X) : (s₁ s₂) s₃ = (s₁ s₃) s₂ :=
--!right_comm union_comm union_assoc s₁ s₂ s₃
theorem subproperty_union_left (s t : property X) : s ⊆ s t := λ x H, or.inl H
theorem subproperty_union_right (s t : property X) : t ⊆ s t := λ x H, or.inr H
theorem union_subproperty {s t r : property X} (sr : s ⊆ r) (tr : t ⊆ r) : s t ⊆ r :=
λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt)
/- intersection -/
definition inter (a b : property X) : property X := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter_iff (x : X) (a b : property X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem mem_inter_eq (x : X) (a b : property X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem mem_inter {x : X} {a b : property X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b :=
and.intro Ha Hb
theorem mem_of_mem_inter_left {x : X} {a b : property X} (H : x ∈ a ∩ b) : x ∈ a :=
and.left H
theorem mem_of_mem_inter_right {x : X} {a b : property X} (H : x ∈ a ∩ b) : x ∈ b :=
and.right H
--theorem inter_self (a : property X) : a ∩ a = a :=
--ext (take x, !and_self)
--theorem inter_empty (a : property X) : a ∩ ∅ = ∅ :=
--ext (take x, !and_false)
--theorem empty_inter (a : property X) : ∅ ∩ a = ∅ :=
--ext (take x, !false_and)
--theorem nonempty_of_inter_nonempty_right {T : Type} {s t : property T} (H : s ∩ t ≠ ∅) : t ≠ ∅ :=
--suppose t = ∅,
--have s ∩ t = ∅, by rewrite this; apply inter_empty,
--H this
--theorem nonempty_of_inter_nonempty_left {T : Type} {s t : property T} (H : s ∩ t ≠ ∅) : s ≠ ∅ :=
--suppose s = ∅,
--have s ∩ t = ∅, by rewrite this; apply empty_inter,
--H this
--theorem inter_comm (a b : property X) : a ∩ b = b ∩ a :=
--ext (take x, !and.comm)
--theorem inter_assoc (a b c : property X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
--ext (take x, !and.assoc)
--theorem inter_left_comm (s₁ s₂ s₃ : property X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
--!left_comm inter_comm inter_assoc s₁ s₂ s₃
--theorem inter_right_comm (s₁ s₂ s₃ : property X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
--!right_comm inter_comm inter_assoc s₁ s₂ s₃
--theorem inter_univ (a : property X) : a ∩ univ = a :=
--ext (take x, !and_true)
--theorem univ_inter (a : property X) : univ ∩ a = a :=
--ext (take x, !true_and)
theorem inter_subproperty_left (s t : property X) : s ∩ t ⊆ s := λ x H, and.left H
theorem inter_subproperty_right (s t : property X) : s ∩ t ⊆ t := λ x H, and.right H
theorem inter_subproperty_inter_right {s t : property X} (u : property X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu)
theorem inter_subproperty_inter_left {s t : property X} (u : property X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t :=
take x, assume xus, and.intro (and.left xus) (H (and.right xus))
theorem subproperty_inter {s t r : property X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
λ x xr, and.intro (rs xr) (rt xr)
--theorem not_mem_of_mem_of_not_mem_inter_left {s t : property X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t :=
-- suppose x ∈ t,
-- have x ∈ s ∩ t, from and.intro Hxs this,
-- show false, from Hnm this
--theorem not_mem_of_mem_of_not_mem_inter_right {s t : property X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s :=
-- suppose x ∈ s,
-- have x ∈ s ∩ t, from and.intro this Hxs,
-- show false, from Hnm this
/- distributivity laws -/
--theorem inter_distrib_left (s t u : property X) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
--ext (take x, !and.left_distrib)
--theorem inter_distrib_right (s t u : property X) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
--ext (take x, !and.right_distrib)
--theorem union_distrib_left (s t u : property X) : s (t ∩ u) = (s t) ∩ (s u) :=
--ext (take x, !or.left_distrib)
--theorem union_distrib_right (s t u : property X) : (s ∩ t) u = (s u) ∩ (t u) :=
--ext (take x, !or.right_distrib)
2017-06-26 16:39:40 +00:00
/- property-builder notation -/
-- {x : X | P}
definition property_of (P : X → Prop) : property X := P
notation `{` binder ` | ` r:(scoped:1 P, property_of P) `}` := r
theorem mem_property_of {P : X → Prop} {a : X} (h : P a) : a ∈ {x | P x} := h
theorem of_mem_property_of {P : X → Prop} {a : X} (h : a ∈ {x | P x}) : P a := h
-- {x ∈ s | P}
definition sep (P : X → Prop) (s : property X) : property X := λx, x ∈ s ∧ P x
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
/- insert -/
definition insert (x : X) (a : property X) : property X := {y : X | y = x y ∈ a}
abbreviation insert_same_level.{u} := @insert.{u u}
-- '{x, y, z}
notation `'{`:max a:(foldr `, ` (x b, insert_same_level x b) ∅) `}`:0 := a
theorem subproperty_insert (x : X) (a : property X) : a ⊆ insert x a :=
take y, assume ys, or.inr ys
theorem mem_insert (x : X) (s : property X) : x ∈ insert x s :=
or.inl rfl
theorem mem_insert_of_mem {x : X} {s : property X} (y : X) : x ∈ s → x ∈ insert y s :=
assume h, or.inr h
theorem eq_or_mem_of_mem_insert {x a : X} {s : property X} : x ∈ insert a s → x = a x ∈ s :=
assume h, h
/- singleton -/
open trunc_index
theorem mem_singleton_iff {X : Type} [is_set X] (a b : X) : a ∈ '{b} ↔ a = b :=
iff.intro
(assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f))
(assume aeqb, or.inl aeqb)
theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert
theorem eq_of_mem_singleton {X : Type} [is_set X] {x y : X} (h : x ∈ '{y}) : x = y :=
or.elim (eq_or_mem_of_mem_insert h)
(suppose x = y, this)
(suppose x ∈ ∅, absurd this (not_mem_empty x))
theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} :=
eq.symm H ▸ mem_singleton y
/-
theorem insert_eq (x : X) (s : property X) : insert x s = '{x} s :=
ext (take y, iff.intro
(suppose y ∈ insert x s,
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
(suppose y ∈ '{x} s,
or.elim this
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
(suppose y ∈ s, or.inr this)))
-/
/-
theorem pair_eq_singleton (a : X) : '{a, a} = '{a} :=
by rewrite [insert_eq_of_mem !mem_singleton]
-/
/-
theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ :=
begin
intro H,
apply not_mem_empty a,
rewrite -H,
apply mem_insert
end
-/
end property