2016-09-09 20:43:09 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
|
|
|
|
|
|
Reduced cohomology
|
|
|
|
|
-/
|
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
import algebra.arrow_group .spectrum homotopy.EM
|
2016-09-09 20:43:09 +00:00
|
|
|
|
|
2016-11-17 21:21:40 +00:00
|
|
|
|
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops
|
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
|
2016-11-17 21:21:40 +00:00
|
|
|
|
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
|
2016-09-09 20:43:09 +00:00
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup :=
|
|
|
|
|
AbGroup_pmap X (πag[2] (Y (2+n)))
|
2016-09-09 20:43:09 +00:00
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup :=
|
2016-09-09 20:43:09 +00:00
|
|
|
|
cohomology X (EM_spectrum G) n
|
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup :=
|
2016-09-09 20:43:09 +00:00
|
|
|
|
ordinary_cohomology X agℤ n
|
|
|
|
|
|
|
|
|
|
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
|
|
|
|
|
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
|
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
-- check H^3[S¹*,EM_spectrum agℤ]
|
|
|
|
|
-- check H^3[S¹*]
|
2016-09-28 14:33:21 +00:00
|
|
|
|
|
2016-11-24 04:54:57 +00:00
|
|
|
|
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ℤ) : AbGroup :=
|
2016-09-28 14:33:21 +00:00
|
|
|
|
cohomology X₊ Y n
|
|
|
|
|
|
|
|
|
|
definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
|
|
|
|
|
(n : ℤ) : cohomology X Y n →g cohomology X' Y n :=
|
|
|
|
|
Group_pmap_homomorphism f (πag[2] (Y (2+n)))
|
|
|
|
|
|
|
|
|
|
definition cohomology_homomorphism_id (X : Type*) (Y : spectrum) (n : ℤ) (f : H^n[X, Y]) :
|
|
|
|
|
cohomology_homomorphism (pid X) Y n f ~* f :=
|
|
|
|
|
!pcompose_pid
|
|
|
|
|
|
|
|
|
|
definition cohomology_homomorphism_compose {X X' X'' : Type*} (g : X'' →* X') (f : X' →* X)
|
|
|
|
|
(Y : spectrum) (n : ℤ) (h : H^n[X, Y]) : cohomology_homomorphism (f ∘* g) Y n h ~*
|
|
|
|
|
cohomology_homomorphism g Y n (cohomology_homomorphism f Y n h) :=
|
|
|
|
|
!passoc⁻¹*
|