Spectral/homotopy/degree.hlean

141 lines
5.2 KiB
Text
Raw Normal View History

import homotopy.sphere2 ..move_to_lib
2016-09-17 23:11:04 +00:00
open fin eq equiv group algebra sphere.ops pointed nat int trunc is_equiv function circle
2017-04-28 09:26:17 +00:00
protected definition nat.eq_one_of_mul_eq_one {n : } (m : ) (q : n * m = 1) : n = 1 :=
begin
cases n with n,
{ exact empty.elim (succ_ne_zero 0 ((nat.zero_mul m)⁻¹ ⬝ q)⁻¹) },
{ cases n with n,
{ reflexivity },
{ apply empty.elim, cases m with m,
{ exact succ_ne_zero 0 q⁻¹ },
{ apply nat.lt_irrefl 1,
exact (calc
1 ≤ (m + 1)
: succ_le_succ (nat.zero_le m)
... = 1 * (m + 1)
: (nat.one_mul (m + 1))⁻¹
... < (n + 2) * (m + 1)
: nat.mul_lt_mul_of_pos_right
(succ_le_succ (succ_le_succ (nat.zero_le n))) (zero_lt_succ m)
... = 1 : q) } } }
end
definition cases_of_nat_abs_eq {z : } (n : ) (p : nat_abs z = n)
: (z = of_nat n) ⊎ (z = - of_nat n) :=
begin
cases p, apply by_cases_of_nat z,
{ intro n, apply sum.inl, reflexivity },
{ intro n, apply sum.inr, exact ap int.neg (ap of_nat (nat_abs_neg n))⁻¹ }
end
2016-09-17 23:11:04 +00:00
definition eq_one_or_eq_neg_one_of_mul_eq_one {n : } (m : ) (p : n * m = 1) : n = 1 ⊎ n = -1 :=
2017-04-28 09:26:17 +00:00
cases_of_nat_abs_eq 1
(nat.eq_one_of_mul_eq_one (nat_abs m)
((int.nat_abs_mul n m)⁻¹ ⬝ ap int.nat_abs p))
2016-09-17 23:11:04 +00:00
definition endomorphism_int_unbundled (f : ) [is_add_hom f] (n : ) :
2016-09-17 23:11:04 +00:00
f n = f 1 * n :=
begin
induction n using rec_nat_on with n IH n IH,
{ refine respect_zero f ⬝ _, exact !mul_zero⁻¹ },
{ refine respect_add f n 1 ⬝ _, rewrite IH,
rewrite [↑int.succ, left_distrib], apply ap (λx, _ + x), exact !mul_one⁻¹},
{ rewrite [neg_nat_succ], refine respect_add f (-n) (- 1) ⬝ _,
rewrite [IH, ↑int.pred, mul_sub_left_distrib], apply ap (λx, _ + x),
refine _ ⬝ ap neg !mul_one⁻¹, exact respect_neg f 1 }
end
namespace sphere
2017-04-28 09:26:17 +00:00
/-
TODO: define for unbased maps, define for S 0,
clear sorry s
prove stable under suspension
-/
2016-09-17 23:11:04 +00:00
attribute fundamental_group_of_circle fg_carrier_equiv_int [constructor]
attribute untrunc_of_is_trunc [unfold 4]
definition surf_eq_loop : @surf 1 = circle.loop := sorry
2018-09-04 09:54:26 +00:00
/-
Favonia had a good idea, which he got from Ulrik: use the cogroup structure on the suspension to construct a group structure on ΣX →* Y, from which you can easily show that deg(id) = 1. See in the Agda library the files cogroup, cohspace and Group/LoopSuspAdjoint (or something)
-/
2016-09-17 23:11:04 +00:00
-- definition π2S2_surf : π2S2 (tr surf) = 1 :> :=
-- begin
-- unfold [π2S2, chain_complex.LES_of_homotopy_groups],
-- end
-- check (pmap.to_fun
-- (chain_complex.cc_to_fn
-- (chain_complex.LES_of_homotopy_groups
-- hopf.complex_phopf)
-- (pair 1 2))
-- (tr surf))
2016-09-17 23:11:04 +00:00
-- eval (pmap.to_fun
-- (chain_complex.cc_to_fn
-- (chain_complex.LES_of_homotopy_groups
-- hopf.complex_phopf)
-- (pair 1 2))
-- (tr surf))
definition πnSn_surf (n : ) : πnSn (n+1) (tr surf) = 1 :> :=
begin
cases n with n IH,
{ refine ap (πnSn _ ∘ tr) surf_eq_loop ⬝ _, apply transport_code_loop },
{ unfold [πnSn], exact sorry}
end
2016-09-17 23:11:04 +00:00
definition deg {n : } [H : is_succ n] (f : S n →* S n) : :=
by induction H with n; exact πnSn (n+1) (π→g[n+1] f (tr surf))
definition deg_id (n : ) [H : is_succ n] : deg (pid (S n)) = (1 : ) :=
by induction H with n;
exact ap (πnSn (n+1)) (homotopy_group_functor_pid (succ n) (S (succ n)) (tr surf)) ⬝ πnSn_surf n
definition deg_phomotopy {n : } [H : is_succ n] {f g : S n →* S n} (p : f ~* g) :
deg f = deg g :=
begin
induction H with n,
exact ap (πnSn (n+1)) (homotopy_group_functor_phomotopy (succ n) p (tr surf)),
end
definition endomorphism_int (f : g →g g) (n : ) : f n = f (1 : ) *[] n :=
2016-09-17 23:11:04 +00:00
@endomorphism_int_unbundled f (homomorphism.addstruct f) n
definition endomorphism_equiv_Z {X : Group} (e : X ≃g g) {one : X}
(p : e one = 1 :> ) (φ : X →g X) (x : X) : e (φ x) = e (φ one) *[] e x :=
begin
revert x, refine equiv_rect' (equiv_of_isomorphism e) _ _,
intro n,
refine endomorphism_int (e ∘g φ ∘g e⁻¹ᵍ) n ⬝ _,
refine ap011 (@mul _) _ _,
{ esimp, apply ap (e ∘ φ), refine ap e⁻¹ᵍ p⁻¹ ⬝ _,
exact to_left_inv (equiv_of_isomorphism e) one },
{ symmetry, exact to_right_inv (equiv_of_isomorphism e) n}
end
definition deg_compose {n : } [H : is_succ n] (f g : S n →* S n) :
deg (g ∘* f) = deg g *[] deg f :=
begin
induction H with n,
refine ap (πnSn (n+1)) (homotopy_group_functor_compose (succ n) g f (tr surf)) ⬝ _,
apply endomorphism_equiv_Z !πnSn !πnSn_surf (π→g[n+1] g)
end
definition deg_equiv {n : } [H : is_succ n] (f : S n ≃* S n) :
deg f = 1 ⊎ deg f = -1 :=
begin
induction H with n,
apply eq_one_or_eq_neg_one_of_mul_eq_one (deg f⁻¹ᵉ*),
refine !deg_compose⁻¹ ⬝ _,
refine deg_phomotopy (pright_inv f) ⬝ _,
apply deg_id
end
end sphere