Spectral/homotopy/EM.hlean

241 lines
9.3 KiB
Text
Raw Normal View History

2016-04-26 20:07:15 +00:00
/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Eilenberg MacLane spaces
-/
import homotopy.EM
open eq is_equiv equiv is_conn is_trunc unit function pointed nat group algebra trunc trunc_index
2016-04-26 21:33:17 +00:00
fiber prod fin pointed
2016-04-26 20:07:15 +00:00
namespace chain_complex
open succ_str
definition is_contr_of_is_embedding_of_is_surjective {N : succ_str} (X : chain_complex N) {n : N}
(H : is_exact_at X (S n)) [is_embedding (cc_to_fn X n)]
[H2 : is_surjective (cc_to_fn X (S (S (S n))))] : is_contr (X (S (S n))) :=
begin
apply is_contr.mk pt, intro x,
have p : cc_to_fn X n (cc_to_fn X (S n) x) = cc_to_fn X n pt,
from !cc_is_chain_complex ⬝ !respect_pt⁻¹,
have q : cc_to_fn X (S n) x = pt, from is_injective_of_is_embedding p,
induction H x q with y r,
induction H2 y with z s,
exact (cc_is_chain_complex X _ z)⁻¹ ⬝ ap (cc_to_fn X _) s ⬝ r
end
end chain_complex open chain_complex
namespace EM
-- MOVE to connectedness
definition is_conn_fun_to_unit_of_is_conn (n : ℕ₋₂) (A : Type) [H : is_conn n A]
: is_conn_fun n (const A unit.star) :=
begin
intro u, induction u,
exact is_conn_equiv_closed n (fiber.fiber_star_equiv A)⁻¹ᵉ _,
end
/- Whitehead Corollaries -/
2016-04-26 21:33:17 +00:00
-- to pointed
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
pequiv.mk id !is_equiv_id idp
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
pointed equivalences -/
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :
(pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘*
(pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ esimp [pequiv.trans, pequiv.symm],
exact !con.right_inv⁻¹ ⬝ ((!idp_con⁻¹ ⬝ !ap_id⁻¹) ◾ (!ap_id⁻¹⁻² ⬝ !idp_con⁻¹)), }
end
-- reorder arguments of is_equiv_compose
-- rename whiteheads_principle to whitehead_principle
definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*}
[HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B)
(H : Πk, is_equiv (π→*[k] f)) : is_equiv f :=
begin
apply whiteheads_principle n, rexact H 0,
intro a k, revert a, apply is_conn.elim -1,
have is_equiv (π→*[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
∘* π→*[k + 1] f ∘* π→*[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
begin
apply is_equiv_compose (π→*[k + 1] f ∘* π→*[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
apply is_equiv_compose (π→*[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
all_goals apply is_equiv_homotopy_group_functor,
end,
refine @(is_equiv.homotopy_closed _) _ this _,
apply to_homotopy,
refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _,
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
apply phomotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
end
2016-04-26 20:07:15 +00:00
-- replace in homotopy_group?
theorem trivial_homotopy_group_of_is_trunc' (A : Type*) {n k : } [is_trunc n A] (H : n < k)
: is_contr (π[k] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply @is_trunc_of_le A n _,
apply trunc_index.le_of_succ_le_succ,
rewrite [succ_sub_two_succ k],
exact of_nat_le_of_nat H,
end
definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A)
[H : is_trunc n A] : is_trunc n (pointed.MK A a) :=
H
definition is_contr_of_trivial_homotopy (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
fapply is_trunc_is_equiv_closed_rev, { exact λa, ⋆},
apply whiteheads_principle n,
{ apply is_equiv_trunc_functor_of_is_conn_fun, apply is_conn_fun_to_unit_of_is_conn},
intro a k,
apply @is_equiv_of_is_contr,
refine trivial_homotopy_group_of_is_trunc' _ !one_le_succ,
end
definition is_contr_of_trivial_homotopy_nat (n : ) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, k ≤ n → is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
apply is_contr_of_trivial_homotopy n,
intro k a, apply @lt_ge_by_cases _ _ n k,
{ intro H', exact trivial_homotopy_group_of_is_trunc' _ H'},
{ intro H', exact H k a H'}
end
definition is_contr_of_trivial_homotopy_pointed (n : ℕ₋₂) (A : Type*) [is_trunc n A]
(H : Πk, is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 qed,
fapply is_contr_of_trivial_homotopy n A,
intro k, apply is_conn.elim -1,
cases A with A a, exact H k
end
definition is_contr_of_trivial_homotopy_nat_pointed (n : ) (A : Type*) [is_trunc n A]
(H : Πk, k ≤ n → is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 !zero_le qed,
fapply is_contr_of_trivial_homotopy_nat n A,
intro k a H', revert a, apply is_conn.elim -1,
cases A with A a, exact H k H'
end
-- replace in homotopy_group
definition phomotopy_group_ptrunc_of_le [constructor] {k n : } (H : k ≤ n) (A : Type*) :
π*[k] (ptrunc n A) ≃* π*[k] A :=
calc
π*[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
: phomotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ) {A B : Type.{u}} (f : A → B)
[is_equiv (trunc_functor 0 f)]
(H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a)))
(H2 : Πa, is_surjective (homotopy_group_functor (succ n) (pmap_of_map f a))) : is_conn_fun n f :=
have H2' : Πa k, k ≤ n → is_surjective (homotopy_group_functor (succ k) (pmap_of_map f a)),
begin
intro a k H, cases H with n' H',
{ apply H2},
{ apply is_surjective_of_is_equiv, apply H1, exact succ_le_succ H'}
end,
have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))),
begin
intro a, apply is_contr_of_trivial_homotopy_nat_pointed n,
{ intro k H, apply is_trunc_equiv_closed_rev, exact phomotopy_group_ptrunc_of_le H _,
rexact @is_contr_of_is_embedding_of_is_surjective +3
(LES_of_homotopy_groups (pmap_of_map f a)) (k, 0)
(is_exact_LES_of_homotopy_groups _ _)
proof @(is_embedding_of_is_equiv _) (H1 a k H) qed
proof (H2' a k H) qed}
end,
show Πb, is_contr (trunc n (fiber f b)),
begin
intro b,
note p := right_inv (trunc_functor 0 f) (tr b), revert p,
induction (trunc_functor 0 f)⁻¹ (tr b), esimp, intro p,
induction !tr_eq_tr_equiv p with q,
rewrite -q, exact H3 a
end
2016-04-26 21:33:17 +00:00
-- open sigma lift
-- definition flatten_univ.{u v} {A : Type.{u}} {B : Type.{v}} (f : A → B) :
-- Σ(A' B' : Type.{max u v}) (f' : A' → B') (g : A ≃ A') (h : B ≃ B'), h ∘ f ~ f' ∘ g :=
-- ⟨lift A, lift B, lift_functor f, proof equiv_lift A qed, proof equiv_lift B qed,
-- proof sorry qed⟩
2016-04-26 20:07:15 +00:00
definition is_conn_inf [reducible] (A : Type) : Type := Πn, is_conn n A
definition is_conn_fun_inf [reducible] {A B : Type} (f : A → B) : Type := Πn, is_conn_fun n f
2016-04-26 21:33:17 +00:00
/- applications to EM spaces -/
-- TODO
definition pEM1_pmap [constructor] {G : Group} {X : Type*} (e : Ω X ≃ G)
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G →* X :=
begin
apply pmap.mk (EM1_map e r),
reflexivity,
end
definition loop_pEM1 [constructor] (G : Group) : Ω (pEM1 G) ≃* pType_of_Group G :=
pequiv_of_equiv (base_eq_base_equiv G) idp
attribute base_eq_base_equiv [constructor]
export [unfold] groupoid_quotient
definition loop_pEM1_pmap {G : Group} {X : Type*} (e : Ω X ≃ G)
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] :
Ω→(pEM1_pmap e r) ~ e⁻¹ᵉ ∘ base_eq_base_equiv G :=
begin
apply homotopy_of_inv_homotopy_pre (base_eq_base_equiv G),
esimp, intro g, exact !idp_con ⬝ !elim_pth
end
definition pEM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : Ω X ≃ G)
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
begin
apply pequiv_of_pmap (pEM1_pmap e r),
apply whitehead_principle_pointed 1,
intro k, cases k with k,
{ apply @is_equiv_of_is_contr,
all_goals (esimp; exact _)},
{ cases k with k,
{ apply is_equiv_trunc_functor, esimp,
apply is_equiv.homotopy_closed, rotate 1,
{ symmetry, exact loop_pEM1_pmap _ _},
apply is_equiv_compose, apply to_is_equiv},
{ apply @is_equiv_of_is_contr,
do 2 apply trivial_homotopy_group_of_is_trunc _ _ _ !one_le_succ}}
end
definition pEM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
[is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
begin
apply pEM1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
intro p q, esimp, exact respect_mul e (tr p) (tr q)
end
definition KG1_pequiv.{u} {X Y : pType.{u}} (e : π₁ X ≃g π₁ Y)
[is_conn 0 X] [is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] : X ≃* Y :=
(pEM1_pequiv e)⁻¹ᵉ* ⬝e* pEM1_pequiv !isomorphism.refl
2016-04-26 20:07:15 +00:00
end EM