Spectral/homotopy/fwedge.hlean

333 lines
15 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Favonia
The Wedge Sum of a family of Pointed Types
-/
2017-06-09 20:51:13 +00:00
import homotopy.wedge ..move_to_lib ..choice ..pointed_pi
open eq is_equiv pushout pointed unit trunc_index sigma bool equiv choice unit is_trunc sigma.ops lift function pi prod
definition fwedge' {I : Type} (F : I → Type*) : Type := pushout (λi, ⟨i, Point (F i)⟩) (λi, ⋆)
definition pt' [constructor] {I : Type} {F : I → Type*} : fwedge' F := inr ⋆
definition fwedge [constructor] {I : Type} (F : I → Type*) : Type* := pointed.MK (fwedge' F) pt'
notation `` := fwedge
namespace fwedge
variables {I : Type} {F : I → Type*}
definition il {i : I} (x : F i) : F := inl ⟨i, x⟩
definition inl (i : I) (x : F i) : F := il x
definition pinl [constructor] (i : I) : F i →* F := pmap.mk (inl i) (glue i)
definition glue (i : I) : inl i pt = pt :> F := glue i
protected definition rec {P : F → Type} (Pinl : Π(i : I) (x : F i), P (il x))
(Pinr : P pt) (Pglue : Πi, pathover P (Pinl i pt) (glue i) (Pinr)) (y : fwedge' F) : P y :=
begin induction y, induction x, apply Pinl, induction x, apply Pinr, apply Pglue end
protected definition elim {P : Type} (Pinl : Π(i : I) (x : F i), P)
(Pinr : P) (Pglue : Πi, Pinl i pt = Pinr) (y : fwedge' F) : P :=
begin induction y with x u, induction x with i x, exact Pinl i x, induction u, apply Pinr, apply Pglue end
protected definition elim_glue {P : Type} {Pinl : Π(i : I) (x : F i), P}
{Pinr : P} (Pglue : Πi, Pinl i pt = Pinr) (i : I)
: ap (fwedge.elim Pinl Pinr Pglue) (fwedge.glue i) = Pglue i :=
!pushout.elim_glue
protected definition rec_glue {P : F → Type} {Pinl : Π(i : I) (x : F i), P (il x)}
{Pinr : P pt} (Pglue : Πi, pathover P (Pinl i pt) (glue i) (Pinr)) (i : I)
: apd (fwedge.rec Pinl Pinr Pglue) (fwedge.glue i) = Pglue i :=
!pushout.rec_glue
end fwedge
attribute fwedge.rec fwedge.elim [recursor 7] [unfold 7]
attribute fwedge.il fwedge.inl [constructor]
namespace fwedge
definition fwedge_of_wedge [unfold 3] {A B : Type*} (x : A B) : (bool.rec A B) :=
begin
induction x with a b,
{ exact inl ff a },
{ exact inl tt b },
{ exact glue ff ⬝ (glue tt)⁻¹ }
end
definition wedge_of_fwedge [unfold 3] {A B : Type*} (x : (bool.rec A B)) : A B :=
begin
induction x with b x b,
{ induction b, exact pushout.inl x, exact pushout.inr x },
{ exact pushout.inr pt },
{ induction b, exact pushout.glue ⋆, reflexivity }
end
definition wedge_pequiv_fwedge [constructor] (A B : Type*) : A B ≃* (bool.rec A B) :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact fwedge_of_wedge },
{ exact wedge_of_fwedge },
{ exact abstract begin intro x, induction x with b x b,
{ induction b: reflexivity },
{ exact glue tt },
{ apply eq_pathover_id_right,
refine ap_compose fwedge_of_wedge _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction b, exact !elim_glue ⬝ph whisker_bl _ hrfl, apply square_of_eq idp }
end end },
{ exact abstract begin intro x, induction x with a b,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose wedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
2017-07-07 21:38:06 +00:00
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
{ exact glue ff }
end
definition is_contr_fwedge_of_neg {I : Type} (P : I → Type*) (H : ¬ I) : is_contr (P) :=
begin
apply is_contr.mk pt, intro x, induction x, contradiction, reflexivity, contradiction
end
definition is_contr_fwedge_empty [instance] : is_contr (empty.elim) :=
is_contr_fwedge_of_neg _ id
definition fwedge_pmap [constructor] {I : Type} {F : I → Type*} {X : Type*} (f : Πi, F i →* X) : F →* X :=
begin
fapply pmap.mk,
{ intro x, induction x,
exact f i x,
exact pt,
exact respect_pt (f i) },
{ reflexivity }
end
definition wedge_pmap [constructor] {A B : Type*} {X : Type*} (f : A →* X) (g : B →* X) : (A B) →* X :=
begin
fapply pmap.mk,
{ intro x, induction x, exact (f a), exact (g a), exact (respect_pt (f) ⬝ (respect_pt g)⁻¹) },
{ exact respect_pt f }
end
definition fwedge_pmap_beta [constructor] {I : Type} {F : I → Type*} {X : Type*} (f : Πi, F i →* X) (i : I) :
fwedge_pmap f ∘* pinl i ~* f i :=
begin
fapply phomotopy.mk,
{ reflexivity },
{ exact !idp_con ⬝ !fwedge.elim_glue⁻¹ }
end
definition fwedge_pmap_eta [constructor] {I : Type} {F : I → Type*} {X : Type*} (g : F →* X) :
fwedge_pmap (λi, g ∘* pinl i) ~* g :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
reflexivity,
exact (respect_pt g)⁻¹,
apply eq_pathover, refine !elim_glue ⬝ph _, apply whisker_lb, exact hrfl },
{ exact con.left_inv (respect_pt g) }
end
2017-06-09 17:55:34 +00:00
definition fwedge_pmap_pinl [constructor] {I : Type} {F : I → Type*} : fwedge_pmap (λi, pinl i) ~* pid ( F) :=
begin
fapply phomotopy.mk,
2017-06-09 17:55:34 +00:00
{ intro x, induction x,
reflexivity, reflexivity,
apply eq_pathover, apply hdeg_square, refine !elim_glue ⬝ !ap_id⁻¹ },
{ reflexivity }
end
definition fwedge_pmap_equiv [constructor] {I : Type} (F : I → Type*) (X : Type*) :
F →* X ≃ Πi, F i →* X :=
begin
fapply equiv.MK,
{ intro g i, exact g ∘* pinl i },
{ exact fwedge_pmap },
{ intro f, apply eq_of_homotopy, intro i, apply eq_of_phomotopy, apply fwedge_pmap_beta f i },
{ intro g, apply eq_of_phomotopy, exact fwedge_pmap_eta g }
end
definition wedge_pmap_equiv [constructor] (A B X : Type*) :
((A B) →* X) ≃ ((A →* X) × (B →* X)) :=
2018-09-07 14:30:39 +00:00
calc (A B) →* X ≃ (bool.rec A B) →* X : by exact ppmap_pequiv_ppmap_left (wedge_pequiv_fwedge A B)⁻¹ᵉ*
... ≃ Πi, (bool.rec A B) i →* X : by exact fwedge_pmap_equiv (bool.rec A B) X
... ≃ (A →* X) × (B →* X) : by exact pi_bool_left (λ i, bool.rec A B i →* X)
2017-06-09 20:51:13 +00:00
definition fwedge_pmap_nat₂ {I : Type}(F : I → Type*){X Y : Type*}
(f : X →* Y) (h : Πi, F i →* X) (w : fwedge F) :
2017-06-09 20:51:13 +00:00
(f ∘* (fwedge_pmap h)) w = fwedge_pmap (λi, f ∘* (h i)) w :=
begin
induction w, reflexivity,
refine !respect_pt,
apply eq_pathover,
refine ap_compose f (fwedge_pmap h) _ ⬝ph _,
refine ap (ap f) !elim_glue ⬝ph _,
2017-06-09 20:51:13 +00:00
refine _ ⬝hp !elim_glue⁻¹, esimp,
apply whisker_br,
apply !hrefl
end
-- making the maps in hsquare 1:
-- top and bottom:
definition prod_pi_bool_comp_funct {A B : Type*}(X : Type*) : (A →* X) × (B →* X) → Π u, (bool.rec A B u →* X) :=
begin
refine equiv.symm _,
fapply pi_bool_left
end
-- left:
2017-07-07 21:38:06 +00:00
definition prod_funct_comp {A B X Y : Type*} (f : X →* Y) : (A →* X) × (B →* X) → (A →* Y) × (B →* Y) :=
prod_functor (pcompose f) (pcompose f)
-- right:
2017-07-07 21:38:06 +00:00
definition left_comp_pi_bool_funct {A B X Y : Type*} (f : X →* Y) : (Π u, (bool.rec A B u →* X)) → (Π u, (bool.rec A B u →* Y)) :=
begin
intro, intro, exact f ∘* (a u)
end
2017-07-07 21:38:06 +00:00
definition left_comp_pi_bool {A B X Y : Type*} (f : X →* Y) : Π u, ((bool.rec A B u →* X) → (bool.rec A B u →* Y)) :=
begin
intro, intro, exact f∘* a
end
-- hsquare 1:
2017-07-07 21:38:06 +00:00
definition prod_to_pi_bool_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (prod_pi_bool_comp_funct X) (prod_pi_bool_comp_funct Y) (prod_funct_comp f) (@left_comp_pi_bool_funct A B X Y f) :=
2017-07-07 21:38:06 +00:00
begin
intro x, fapply eq_of_homotopy, intro u, induction u, esimp, esimp
end
-- hsquare 2:
2017-07-07 21:38:06 +00:00
definition fwedge_pmap_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (fwedge_pmap_equiv (bool.rec A B) X)⁻¹ᵉ (fwedge_pmap_equiv (bool.rec A B) Y)⁻¹ᵉ (left_comp_pi_bool_funct f) (pcompose f) :=
2017-07-07 21:38:06 +00:00
begin
intro h, esimp, fapply eq_of_phomotopy, fapply phomotopy.mk,
exact fwedge_pmap_nat₂ (λ u, bool.rec A B u) f h,
reflexivity
end
-- hsquare 3:
definition fwedge_to_wedge_nat_square {A B X Y : Type*} (f : X →* Y) :
2018-09-07 14:30:39 +00:00
hsquare (ppmap_pequiv_ppmap_left (wedge_pequiv_fwedge A B)) (ppmap_pequiv_ppmap_left (wedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
2017-07-07 21:38:06 +00:00
begin
exact sorry
end
definition wedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A B),
(f ∘* (wedge_pmap h k)) w = wedge_pmap (f ∘* h )(f ∘* k) w :=
have H : _, from
(@prod_to_pi_bool_nat_square A B X Y f) ⬝htyh (fwedge_pmap_nat_square f) ⬝htyh (fwedge_to_wedge_nat_square f),
2017-07-07 21:38:06 +00:00
sorry
-- SA to here 7/5
2017-06-09 12:35:21 +00:00
definition fwedge_pmap_phomotopy {I : Type} {F : I → Type*} {X : Type*} {f g : Π i, F i →* X}
(h : Π i, f i ~* g i) : fwedge_pmap f ~* fwedge_pmap g :=
begin
fconstructor,
{ fapply fwedge.rec,
{ exact h },
{ reflexivity },
{ intro i, apply eq_pathover,
refine _ ⬝ph _ ⬝hp _,
{ exact (respect_pt (g i)) },
{ exact (respect_pt (f i)) },
{ exact !elim_glue },
{ apply square_of_eq,
exact ((phomotopy.sigma_char (f i) (g i)) (h i)).2
},
{ refine !elim_glue⁻¹ }
}
},
{ reflexivity }
end
open trunc
2018-10-10 01:27:27 +00:00
definition trunc_fwedge_pmap_equiv.{u v w} {n : ℕ₋₂} {I : Type.{u}} (H : has_choice n I)
(F : I → pType.{v}) (X : pType.{w}) : trunc n (F →* X) ≃ Πi, trunc n (F i →* X) :=
trunc_equiv_trunc n (fwedge_pmap_equiv F X) ⬝e choice_equiv (λi, F i →* X)
2017-06-09 12:35:21 +00:00
definition fwedge_functor [constructor] {I : Type} {F F' : I → Type*} (f : Π i, F i →* F' i)
: F →* F' := fwedge_pmap (λ i, pinl i ∘* f i)
definition fwedge_functor_pid {I : Type} {F : I → Type*}
: @fwedge_functor I F F (λ i, !pid) ~* !pid :=
calc fwedge_pmap (λ i, pinl i ∘* !pid) ~* fwedge_pmap pinl : by exact fwedge_pmap_phomotopy (λ i, pcompose_pid (pinl i))
... ~* fwedge_pmap (λ i, !pid ∘* pinl i) : by exact fwedge_pmap_phomotopy (λ i, phomotopy.symm (pid_pcompose (pinl i)))
... ~* !pid : by exact fwedge_pmap_eta !pid
2017-06-09 17:22:15 +00:00
definition fwedge_functor_pcompose {I : Type} {F F' F'' : I → Type*} (g : Π i, F' i →* F'' i)
2017-06-09 12:35:21 +00:00
(f : Π i, F i →* F' i) : fwedge_functor (λ i, g i ∘* f i) ~* fwedge_functor g ∘* fwedge_functor f :=
calc fwedge_functor (λ i, g i ∘* f i)
~* fwedge_pmap (λ i, (pinl i ∘* g i) ∘* f i)
: by exact fwedge_pmap_phomotopy (λ i, phomotopy.symm (passoc (pinl i) (g i) (f i)))
... ~* fwedge_pmap (λ i, (fwedge_functor g ∘* pinl i) ∘* f i)
: by exact fwedge_pmap_phomotopy (λ i, pwhisker_right (f i) (phomotopy.symm (fwedge_pmap_beta (λ i, pinl i ∘* g i) i)))
... ~* fwedge_pmap (λ i, fwedge_functor g ∘* (pinl i ∘* f i))
: by exact fwedge_pmap_phomotopy (λ i, passoc (fwedge_functor g) (pinl i) (f i))
... ~* fwedge_pmap (λ i, fwedge_functor g ∘* (fwedge_functor f ∘* pinl i))
: by exact fwedge_pmap_phomotopy (λ i, pwhisker_left (fwedge_functor g) (phomotopy.symm (fwedge_pmap_beta (λ i, pinl i ∘* f i) i)))
... ~* fwedge_pmap (λ i, (fwedge_functor g ∘* fwedge_functor f) ∘* pinl i)
: by exact fwedge_pmap_phomotopy (λ i, (phomotopy.symm (passoc (fwedge_functor g) (fwedge_functor f) (pinl i))))
... ~* fwedge_functor g ∘* fwedge_functor f
: by exact fwedge_pmap_eta (fwedge_functor g ∘* fwedge_functor f)
2017-06-09 17:22:15 +00:00
definition fwedge_functor_phomotopy {I : Type} {F F' : I → Type*} {f g : Π i, F i →* F' i}
2017-06-09 12:35:21 +00:00
(h : Π i, f i ~* g i) : fwedge_functor f ~* fwedge_functor g :=
fwedge_pmap_phomotopy (λ i, pwhisker_left (pinl i) (h i))
definition fwedge_pequiv [constructor] {I : Type} {F F' : I → Type*} (f : Π i, F i ≃* F' i) : F ≃* F' :=
let pto := fwedge_functor (λ i, f i) in
let pfrom := fwedge_functor (λ i, (f i)⁻¹ᵉ*) in
begin
fapply pequiv_of_pmap, exact pto,
2017-06-09 17:22:15 +00:00
fapply adjointify, exact pfrom,
{ intro y, refine (fwedge_functor_pcompose (λ i, f i) (λ i, (f i)⁻¹ᵉ*) y)⁻¹ ⬝ _,
refine fwedge_functor_phomotopy (λ i, pright_inv (f i)) y ⬝ _,
2017-06-09 12:35:21 +00:00
exact fwedge_functor_pid y
},
2017-06-09 17:22:15 +00:00
{ intro y, refine (fwedge_functor_pcompose (λ i, (f i)⁻¹ᵉ*) (λ i, f i) y)⁻¹ ⬝ _,
refine fwedge_functor_phomotopy (λ i, pleft_inv (f i)) y ⬝ _,
2017-06-09 12:35:21 +00:00
exact fwedge_functor_pid y
}
end
2017-06-09 17:55:34 +00:00
definition plift_fwedge.{u v} {I : Type} (F : I → pType.{u}) : plift.{u v} ( F) ≃* (plift.{u v} ∘ F) :=
2017-06-09 12:35:21 +00:00
calc plift.{u v} ( F) ≃* F : by exact !pequiv_plift ⁻¹ᵉ*
2017-06-09 17:55:34 +00:00
... ≃* (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : (F ∘ down.{u v}) ≃* F :=
2017-06-09 21:00:56 +00:00
proof
2017-06-09 17:55:34 +00:00
let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) ( F) (λ i, pinl (down i)) in
let pfrom := @fwedge_pmap I F ( (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in
begin
fapply pequiv_of_pmap,
{ exact pto },
fapply adjointify,
{ exact pfrom },
{ intro x, exact calc pto (pfrom x) = fwedge_pmap (λ i, (pto ∘* pfrom) ∘* pinl i) x : by exact (fwedge_pmap_eta (pto ∘* pfrom) x)⁻¹
... = fwedge_pmap (λ i, pto ∘* (pfrom ∘* pinl i)) x : by exact fwedge_pmap_phomotopy (λ i, passoc pto pfrom (pinl i)) x
... = fwedge_pmap (λ i, pto ∘* pinl (up.{u v} i)) x : by exact fwedge_pmap_phomotopy (λ i, pwhisker_left pto (fwedge_pmap_beta (λ i, pinl (up.{u v} i)) i)) x
... = fwedge_pmap pinl x : by exact fwedge_pmap_phomotopy (λ i, fwedge_pmap_beta (λ i, (pinl (down.{u v} i))) (up.{u v} i)) x
... = x : by exact fwedge_pmap_pinl x
},
{ intro x, exact calc pfrom (pto x) = fwedge_pmap (λ i, (pfrom ∘* pto) ∘* pinl i) x : by exact (fwedge_pmap_eta (pfrom ∘* pto) x)⁻¹
... = fwedge_pmap (λ i, pfrom ∘* (pto ∘* pinl i)) x : by exact fwedge_pmap_phomotopy (λ i, passoc pfrom pto (pinl i)) x
... = fwedge_pmap (λ i, pfrom ∘* pinl (down.{u v} i)) x : by exact fwedge_pmap_phomotopy (λ i, pwhisker_left pfrom (fwedge_pmap_beta (λ i, pinl (down.{u v} i)) i)) x
... = fwedge_pmap pinl x : by exact fwedge_pmap_phomotopy (λ i,
begin induction i with i,
exact fwedge_pmap_beta (λ i, (pinl (up.{u v} i))) i
end
) x
... = x : by exact fwedge_pmap_pinl x
}
2017-06-09 20:51:13 +00:00
2017-06-09 17:55:34 +00:00
end
2017-06-09 21:00:56 +00:00
qed
2017-06-09 12:35:21 +00:00
end fwedge