Spectral/algebra/module_chain_complex.hlean

58 lines
1.8 KiB
Text
Raw Normal View History

2017-03-10 16:51:24 +00:00
/-
Author: Jeremy Avigad
-/
import homotopy.chain_complex ..algebra.module ..algebra.is_short_exact ..move_to_lib
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc
open algebra function
open chain_complex
open succ_str
2017-03-30 19:43:54 +00:00
open left_module
2017-03-10 16:51:24 +00:00
structure module_chain_complex (R : Ring) (N : succ_str) : Type :=
(mod : N → LeftModule R)
(hom : Π (n : N), left_module.homomorphism (mod (S n)) (mod n))
(is_chain_complex :
Π (n : N) (x : mod (S (S n))), hom n (hom (S n) x) = 0)
namespace module_chain_complex
variables {R : Ring} {N : succ_str}
definition mcc_mod [unfold 2] [coercion] (C : module_chain_complex R N) (n : N) :
LeftModule R :=
module_chain_complex.mod C n
definition mcc_carr [unfold 2] [coercion] (C : module_chain_complex R N) (n : N) :
Type :=
C n
definition mcc_pcarr [unfold 2] [coercion] (C : module_chain_complex R N) (n : N) :
Set* :=
mcc_mod C n
definition mcc_hom (C : module_chain_complex R N) {n : N} : C (S n) →lm C n :=
module_chain_complex.hom C n
definition mcc_is_chain_complex (C : module_chain_complex R N) (n : N) (x : C (S (S n))) :
mcc_hom C (mcc_hom C x) = 0 :=
module_chain_complex.is_chain_complex C n x
protected definition to_chain_complex [coercion] (C : module_chain_complex R N) :
chain_complex N :=
chain_complex.mk
(λ n, mcc_pcarr C n)
(λ n, pmap_of_homomorphism (@mcc_hom R N C n))
(mcc_is_chain_complex C)
-- maybe we don't even need this?
definition is_exact_at_m (C : module_chain_complex R N) (n : N) : Type :=
is_exact_at C n
end module_chain_complex
namespace left_module
variable {R : Ring}
variables {A₀ B₀ C₀ : LeftModule R}
variables (f₀ : A₀ →lm B₀) (g₀ : B₀ →lm C₀)
definition is_short_exact := @_root_.is_short_exact _ _ C₀ f₀ g₀
end left_module