Spectral/homology/torus.hlean

41 lines
2.2 KiB
Text
Raw Normal View History

2017-06-09 21:48:00 +00:00
/-
Copyright (c) 2017 Kuen-Bang Hou (Favonia).
Released under Apache 2.0 license as described in the file LICENSE.
Author: Kuen-Bang Hou (Favonia)
-/
import .homology .sphere ..susp_product
open eq pointed group algebra circle sphere nat equiv susp
function sphere homology int lift prod smash
namespace homology
section
parameter (theory : ordinary_homology_theory)
open ordinary_homology_theory
theorem Hptorus : Π(n : )(m : ), HH theory n (plift (psphere m ×* psphere m)) ≃g
HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))) := λ n m,
calc HH theory n (plift (psphere m ×* psphere m))
≃g HH theory (n + 1) (plift (⅀ (psphere m ×* psphere m))) : by exact (Hplift_psusp theory n (psphere m ×* psphere m))⁻¹ᵍ
... ≃g HH theory (n + 1) (plift (⅀ (psphere m) (⅀ (psphere m) ⅀ (psphere m ∧ psphere m))))
2017-06-09 21:55:19 +00:00
: by exact Hplift_isomorphism theory (n + 1) (susp_product (psphere m) (psphere m))
2017-06-09 21:48:00 +00:00
... ≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m) (⅀ (psphere m ∧ psphere m))))
: by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m) (⅀ (psphere m ∧ psphere m)))
... ≃g HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m))))
: by exact product_isomorphism (Hplift_psusp theory n (psphere m))
(calc
HH theory (n + 1) (plift (⅀ (psphere m) (⅀ (psphere m ∧ psphere m))))
≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m ∧ psphere m)))
: by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m ∧ psphere m))
... ≃g HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))
: by exact product_isomorphism (Hplift_psusp theory n (psphere m))
2017-06-09 21:55:19 +00:00
(Hplift_psusp theory n (psphere m ∧ psphere m) ⬝g Hplift_isomorphism theory n (sphere_smash_sphere m m)))
2017-06-09 21:48:00 +00:00
end
end homology