Spectral/pointed_pi.hlean

180 lines
6.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz
-/
import move_to_lib
open eq pointed equiv sigma
/-
The goal of this file is to give the truncation level
of the type of pointed maps, giving the connectivity of
the domain and the truncation level of the codomain.
This is is_trunc_pmap at the end.
First we define the type of dependent pointed maps
as a tool, because these appear in the more general
statement is_trunc_ppi (the generality needed for induction).
Unfortunately, some of these names (ppi) and notations (Π*)
clash with those in types.pi in the pi namespace.
-/
namespace pointed
-- needs another name! (one more p?)
structure ppi (A : Type*) (P : A → Type*) :=
(to_fun : Π a : A, P a)
(resp_pt : to_fun (Point A) = Point (P (Point A)))
attribute ppi.to_fun [coercion]
abbreviation ppi_resp_pt [unfold 3] := @ppi.resp_pt
definition pointed_ppi [instance] [constructor] {A : Type*}
(P : A → Type*) : pointed (ppi A P) :=
pointed.mk (ppi.mk (λ a, pt) idp)
definition pppi [constructor] {A : Type*} (P : A → Type*) : Type* :=
pointed.mk' (ppi A P)
notation `Π*` binders `, ` r:(scoped P, pppi P) := r
structure ppi_homotopy {A : Type*} {P : A → Type*} (f g : Π*(a : A), P a) :=
(homotopy : f ~ g)
(homotopy_pt : homotopy pt ⬝ ppi_resp_pt g = ppi_resp_pt f)
variables {A : Type*} {P : A → Type*} {f g : Π*(a : A), P a}
infix ` ~~* `:50 := ppi_homotopy
abbreviation ppi_to_homotopy_pt [unfold 5] := @ppi_homotopy.homotopy_pt
abbreviation ppi_to_homotopy [coercion] [unfold 5] (p : f ~~* g) : Πa, f a = g a :=
ppi_homotopy.homotopy p
definition ppi_equiv_pmap (A B : Type*) : (Π*(a : A), B) ≃ (A →* B) :=
begin
fapply equiv.MK,
{ intro f, induction f with f p, exact pmap.mk f p },
{ intro f, induction f with f p, exact ppi.mk f p },
{ intro f, induction f with f p, reflexivity },
{ intro f, induction f with f p, reflexivity }
end
definition ppi.sigma_char [constructor] {A : Type*} (P : A → Type*)
: (Π*(a : A), P a) ≃ Σ(f : (Π (a : A), P a)), f pt = pt :=
begin
fapply equiv.MK : intros f,
{ exact ⟨ f , ppi_resp_pt f ⟩ },
all_goals cases f with f p,
{ exact ppi.mk f p },
all_goals reflexivity
end
-- the same as pmap_eq
definition ppi_eq (h : f ~ g) : ppi_resp_pt f = h pt ⬝ ppi_resp_pt g → f = g :=
begin
cases f with f p, cases g with g q, intro r,
esimp at *,
fapply apd011 ppi.mk,
{ apply eq_of_homotopy h },
{ esimp, apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con,
rewrite [ap_eq_apd10, apd10_eq_of_homotopy], exact r }
end
variables (f g)
definition ppi_homotopy.sigma_char [constructor]
: (f ~~* g) ≃ Σ(p : f ~ g), p pt ⬝ ppi_resp_pt g = ppi_resp_pt f :=
begin
fapply equiv.MK : intros h,
{ exact ⟨h , ppi_to_homotopy_pt h⟩ },
all_goals cases h with h p,
{ exact ppi_homotopy.mk h p },
all_goals reflexivity
end
-- the same as pmap_eq_equiv
definition ppi_eq_equiv : (f = g) ≃ (f ~~* g) :=
calc (f = g) ≃ ppi.sigma_char P f = ppi.sigma_char P g
: eq_equiv_fn_eq (ppi.sigma_char P) f g
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
pathover (λh, h pt = pt) (ppi_resp_pt f) p (ppi_resp_pt g)
: sigma_eq_equiv _ _
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
ppi_resp_pt f = ap (λh, h pt) p ⬝ ppi_resp_pt g
: sigma_equiv_sigma_right
(λp, pathover_eq_equiv_Fl p (ppi_resp_pt f) (ppi_resp_pt g))
... ≃ Σ(p : ppi.to_fun f = ppi.to_fun g),
ppi_resp_pt f = apd10 p pt ⬝ ppi_resp_pt g
: sigma_equiv_sigma_right
(λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _))
... ≃ Σ(p : f ~ g), ppi_resp_pt f = p pt ⬝ ppi_resp_pt g
: sigma_equiv_sigma_left' eq_equiv_homotopy
... ≃ Σ(p : f ~ g), p pt ⬝ ppi_resp_pt g = ppi_resp_pt f
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
... ≃ (f ~~* g) : ppi_homotopy.sigma_char f g
definition ppi_loop_equiv_lemma (p : f ~ f)
: (p pt ⬝ ppi_resp_pt f = ppi_resp_pt f) ≃ (p pt = idp) :=
calc (p pt ⬝ ppi_resp_pt f = ppi_resp_pt f)
≃ (p pt ⬝ ppi_resp_pt f = idp ⬝ ppi_resp_pt f)
: equiv_eq_closed_right (p pt ⬝ ppi_resp_pt f) (inverse (idp_con (ppi_resp_pt f)))
... ≃ (p pt = idp)
: eq_equiv_con_eq_con_right
definition ppi_loop_equiv : (f = f) ≃ Π*(a : A), Ω (pType.mk (P a) (f a)) :=
calc (f = f) ≃ (f ~~* f)
: ppi_eq_equiv
... ≃ Σ(p : f ~ f), p pt ⬝ ppi_resp_pt f = ppi_resp_pt f
: ppi_homotopy.sigma_char f f
... ≃ Σ(p : f ~ f), p pt = idp
: sigma_equiv_sigma_right
(λ p, ppi_loop_equiv_lemma f p)
... ≃ Π*(a : A), pType.mk (f a = f a) idp
: ppi.sigma_char
... ≃ Π*(a : A), Ω (pType.mk (P a) (f a))
: erfl
end pointed open pointed
open is_trunc is_conn
section
variables (A : Type*) (n : ℕ₋₂) [H : is_conn (n.+1) A]
include H
definition is_contr_ppi_match (P : A → (n.+1)-Type*)
: is_contr (Π*(a : A), P a) :=
begin
apply is_contr.mk pt,
intro f, induction f with f p,
fapply ppi_eq,
{ apply is_conn.elim n, esimp, exact p⁻¹ },
{ krewrite (is_conn.elim_β n), apply inverse, apply con.left_inv }
end
definition is_trunc_ppi (k : ℕ₋₂) (P : A → (n.+1+2+k)-Type*)
: is_trunc k.+1 (Π*(a : A), P a) :=
begin
induction k with k IH,
{ apply is_prop_of_imp_is_contr, intro f,
apply is_contr_ppi_match },
{ apply is_trunc_succ_of_is_trunc_loop
(trunc_index.succ_le_succ (trunc_index.minus_two_le k)),
intro f,
apply @is_trunc_equiv_closed_rev _ _ k.+1
(ppi_loop_equiv f),
apply IH, intro a,
apply ptrunctype.mk (Ω (pType.mk (P a) (f a))),
{ apply is_trunc_loop, exact is_trunc_ptrunctype (P a) },
{ exact pt } }
end
definition is_trunc_pmap (k : ℕ₋₂) (B : (n.+1+2+k)-Type*)
: is_trunc k.+1 (A →* B) :=
@is_trunc_equiv_closed _ _ k.+1 (ppi_equiv_pmap A B)
(is_trunc_ppi A n k (λ a, B))
end