Spectral/group_theory/basic.hlean

78 lines
2.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Basic group theory
-/
/-
Groups are defined in the HoTT library in algebra/group, as part of the algebraic hierarchy.
However, there is currently no group theory.
The only relevant defintions are the trivial group (in types/unit) and some files in algebra/
-/
import algebra.group types.pointed types.pi
open eq algebra pointed function is_trunc pi
namespace group
definition pointed_Group [instance] (G : Group) : pointed G := pointed.mk one
definition Pointed_of_Group (G : Group) : Type* := pointed.mk' G
definition Group_of_CommGroup [coercion] [constructor] (G : CommGroup) : Group :=
Group.mk G _
definition comm_group_Group_of_CommGroup [instance] [constructor] (G : CommGroup)
: comm_group (Group_of_CommGroup G) :=
begin esimp, exact _ end
/- group homomorphisms -/
structure homomorphism (G₁ G₂ : Group) : Type :=
(φ : G₁ → G₂)
(p : Π(g h : G₁), φ (g * h) = φ g * φ h)
attribute homomorphism.φ [coercion]
abbreviation group_fun [unfold 3] := @homomorphism.φ
abbreviation respect_mul := @homomorphism.p
infix ` →g `:55 := homomorphism
variables {G₁ G₂ G₃ : Group} {g h : G₁} {ψ : G₂ →g G₃} {φ φ' : G₁ →g G₂}
theorem respect_one (φ : G₁ →g G₂) : φ 1 = 1 :=
mul.right_cancel
(calc
φ 1 * φ 1 = φ (1 * 1) : respect_mul
... = φ 1 : ap φ !one_mul
... = 1 * φ 1 : one_mul)
theorem respect_inv (φ : G₁ →g G₂) (g : G₁) : φ g⁻¹ = (φ g)⁻¹ :=
eq_inv_of_mul_eq_one (!respect_mul⁻¹ ⬝ ap φ !mul.left_inv ⬝ !respect_one)
local attribute Pointed_of_Group [coercion]
definition pmap_of_homomorphism [constructor] (φ : G₁ →g G₂) : G₁ →* G₂ :=
pmap.mk φ !respect_one
definition homomorphism_eq (p : group_fun φ ~ group_fun φ') : φ = φ' :=
begin
induction φ with φ q, induction φ' with φ' q', esimp at p, induction p,
exact ap (homomorphism.mk φ) !is_hprop.elim
end
/- categorical structure of groups + homomorphisms -/
definition homomorphism_compose [constructor] (ψ : G₂ →g G₃) (φ : G₁ →g G₂) : G₁ → G₃ :=
homomorphism.mk (ψ ∘ φ) (λg h, ap ψ !respect_mul ⬝ !respect_mul)
definition homomorphism_id [constructor] (G : Group) : G → G :=
homomorphism.mk id (λg h, idp)
-- TODO: maybe define this in more generality for pointed types?
definition kernel [constructor] (φ : G₁ →g G₂) (g : G₁) : hprop := trunctype.mk (φ g = 1) _
end group