78 lines
2.9 KiB
Text
78 lines
2.9 KiB
Text
|
import types.trunc types.sum
|
|||
|
|
|||
|
open pi prod sum unit bool trunc is_trunc is_equiv eq equiv
|
|||
|
|
|||
|
namespace choice
|
|||
|
|
|||
|
-- the following brilliant name is from Agda
|
|||
|
definition unchoose [unfold 4] (n : ℕ₋₂) {X : Type} (A : X → Type) : trunc n (Πx, A x) → Πx, trunc n (A x) :=
|
|||
|
trunc.elim (λf x, tr (f x))
|
|||
|
|
|||
|
definition has_choice.{u} (n : ℕ₋₂) (X : Type.{u}) : Type.{u+1} :=
|
|||
|
Π(A : X → Type.{u}), is_equiv (unchoose n A)
|
|||
|
|
|||
|
definition choice_equiv.{u} [constructor] {n : ℕ₋₂} {X : Type.{u}} (H : has_choice n X) (A : X → Type.{u})
|
|||
|
: trunc n (Πx, A x) ≃ (Πx, trunc n (A x)) :=
|
|||
|
equiv.mk _ (H A)
|
|||
|
|
|||
|
definition has_choice_of_succ (X : Type) (H : Πk, has_choice (k.+1) X) (n : ℕ₋₂) : has_choice n X :=
|
|||
|
begin
|
|||
|
cases n with n,
|
|||
|
{ intro A, apply is_equiv_of_is_contr },
|
|||
|
{ exact H n }
|
|||
|
end
|
|||
|
|
|||
|
definition has_choice_empty (n : ℕ₋₂) : has_choice n empty :=
|
|||
|
begin
|
|||
|
intro A, fapply adjointify,
|
|||
|
{ intro f, apply tr, intro x, induction x },
|
|||
|
{ intro f, apply eq_of_homotopy, intro x, induction x },
|
|||
|
{ intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro x, induction x }
|
|||
|
end
|
|||
|
|
|||
|
definition is_trunc_is_contr_fiber [instance] [priority 900] (n : ℕ₋₂) {A B : Type} (f : A → B)
|
|||
|
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
|
|||
|
begin
|
|||
|
cases n,
|
|||
|
{ apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv,
|
|||
|
apply is_equiv_of_is_contr },
|
|||
|
{ apply is_trunc_succ_of_is_prop }
|
|||
|
end
|
|||
|
|
|||
|
definition has_choice_unit : Πn, has_choice n unit :=
|
|||
|
begin
|
|||
|
intro n A, fapply adjointify,
|
|||
|
{ intro f, induction f ⋆ with a, apply tr, intro u, induction u, exact a },
|
|||
|
{ intro f, apply eq_of_homotopy, intro u, induction u, esimp, generalize f ⋆, intro a,
|
|||
|
induction a, reflexivity },
|
|||
|
{ intro g, induction g with g, apply ap tr, apply eq_of_homotopy,
|
|||
|
intro u, induction u, reflexivity }
|
|||
|
end
|
|||
|
|
|||
|
definition has_choice_sum.{u} (n : ℕ₋₂) {A B : Type.{u}} (hA : has_choice n A) (hB : has_choice n B)
|
|||
|
: has_choice n (A ⊎ B) :=
|
|||
|
begin
|
|||
|
intro P, fapply is_equiv_of_equiv_of_homotopy,
|
|||
|
{ exact calc
|
|||
|
trunc n (Πx, P x) ≃ trunc n ((Πa, P (inl a)) × Πb, P (inr b))
|
|||
|
: trunc_equiv_trunc n !equiv_sum_rec⁻¹ᵉ
|
|||
|
... ≃ trunc n (Πa, P (inl a)) × trunc n (Πb, P (inr b)) : trunc_prod_equiv
|
|||
|
... ≃ (Πa, trunc n (P (inl a))) × Πb, trunc n (P (inr b))
|
|||
|
: by exact prod_equiv_prod (choice_equiv hA _) (choice_equiv hB _)
|
|||
|
... ≃ Πx, trunc n (P x) : equiv_sum_rec },
|
|||
|
{ intro f, induction f, apply eq_of_homotopy, intro x, esimp, induction x with a b: reflexivity }
|
|||
|
end
|
|||
|
|
|||
|
/- currently we prove it using univalence -/
|
|||
|
definition has_choice_equiv_closed.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A ≃ B) (hA : has_choice n B)
|
|||
|
: has_choice n A :=
|
|||
|
begin
|
|||
|
induction f using rec_on_ua_idp, assumption
|
|||
|
end
|
|||
|
|
|||
|
definition has_choice_bool (n : ℕ₋₂) : has_choice n bool :=
|
|||
|
has_choice_equiv_closed n bool_equiv_unit_sum_unit
|
|||
|
(has_choice_sum n (has_choice_unit n) (has_choice_unit n))
|
|||
|
|
|||
|
end choice
|