117 lines
4.6 KiB
Text
117 lines
4.6 KiB
Text
|
import ..algebra.module_exact_couple .strunc
|
|||
|
|
|||
|
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift
|
|||
|
|
|||
|
/- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/
|
|||
|
|
|||
|
definition postnikov_map [constructor] (A : Type*) (n : ℕ₋₂) : ptrunc (n.+1) A →* ptrunc n A :=
|
|||
|
ptrunc.elim (n.+1) !ptr
|
|||
|
|
|||
|
definition ptrunc_functor_postnikov_map {A B : Type*} (n : ℕ₋₂) (f : A →* B) :
|
|||
|
ptrunc_functor n f ∘* postnikov_map A n ~* ptrunc.elim (n.+1) (!ptr ∘* f) :=
|
|||
|
begin
|
|||
|
fapply phomotopy.mk,
|
|||
|
{ intro x, induction x with a, reflexivity },
|
|||
|
{ reflexivity }
|
|||
|
end
|
|||
|
|
|||
|
section
|
|||
|
open nat is_conn group
|
|||
|
definition pfiber_postnikov_map (A : Type*) (n : ℕ) :
|
|||
|
pfiber (postnikov_map A n) ≃* EM_type A (n+1) :=
|
|||
|
begin
|
|||
|
symmetry, apply EM_type_pequiv,
|
|||
|
{ symmetry, refine _ ⬝g ghomotopy_group_ptrunc (n+1) A,
|
|||
|
exact chain_complex.LES_isomorphism_of_trivial_cod _ _
|
|||
|
(trivial_homotopy_group_of_is_trunc _ (self_lt_succ n))
|
|||
|
(trivial_homotopy_group_of_is_trunc _ (le_succ _)) },
|
|||
|
{ apply is_conn_fun_trunc_elim, apply is_conn_fun_tr },
|
|||
|
{ have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc,
|
|||
|
have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc,
|
|||
|
apply is_trunc_pfiber }
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) :
|
|||
|
psquare (postnikov_map A n) (postnikov_map B n)
|
|||
|
(ptrunc_functor (n.+1) f) (ptrunc_functor n f) :=
|
|||
|
!ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹*
|
|||
|
|
|||
|
definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') :
|
|||
|
trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') :=
|
|||
|
by induction p; reflexivity
|
|||
|
|
|||
|
definition ap1_postnikov_map (A : Type*) (n : ℕ₋₂) :
|
|||
|
psquare (Ω→ (postnikov_map A (n.+1))) (postnikov_map (Ω A) n)
|
|||
|
(loop_ptrunc_pequiv (n.+1) A) (loop_ptrunc_pequiv n A) :=
|
|||
|
have psquare (postnikov_map (Ω A) n) (Ω→ (postnikov_map A (n.+1)))
|
|||
|
(loop_ptrunc_pequiv (n.+1) A)⁻¹ᵉ* (loop_ptrunc_pequiv n A)⁻¹ᵉ*,
|
|||
|
begin
|
|||
|
refine _ ⬝* !ap1_ptrunc_elim⁻¹*, apply pinv_left_phomotopy_of_phomotopy,
|
|||
|
fapply phomotopy.mk,
|
|||
|
{ intro x, induction x with p, exact !encode_ap1_gen_tr⁻¹ },
|
|||
|
{ reflexivity }
|
|||
|
end,
|
|||
|
this⁻¹ᵛ*
|
|||
|
|
|||
|
|
|||
|
-- definition postnikov_map_int (X : Type*) (k : ℤ) :
|
|||
|
-- ptrunc (maxm2 (k + 1)) X →* ptrunc (maxm2 k) X :=
|
|||
|
-- begin
|
|||
|
-- induction k with k k,
|
|||
|
-- exact postnikov_map X k,
|
|||
|
-- exact !pconst
|
|||
|
-- end
|
|||
|
|
|||
|
-- definition postnikov_map_int_natural {A B : Type*} (f : A →* B) (k : ℤ) :
|
|||
|
-- psquare (postnikov_map_int A k) (postnikov_map_int B k)
|
|||
|
-- (ptrunc_int_functor (k+1) f) (ptrunc_int_functor k f) :=
|
|||
|
-- begin
|
|||
|
-- induction k with k k,
|
|||
|
-- exact postnikov_map_natural f k,
|
|||
|
-- apply psquare_of_phomotopy, exact !pcompose_pconst ⬝* !pconst_pcompose⁻¹*
|
|||
|
-- end
|
|||
|
|
|||
|
-- definition postnikov_map_int_natural_pequiv {A B : Type*} (f : A ≃* B) (k : ℤ) :
|
|||
|
-- psquare (postnikov_map_int A k) (postnikov_map_int B k)
|
|||
|
-- (ptrunc_int_pequiv_ptrunc_int (k+1) f) (ptrunc_int_pequiv_ptrunc_int k f) :=
|
|||
|
-- begin
|
|||
|
-- induction k with k k,
|
|||
|
-- exact postnikov_map_natural f k,
|
|||
|
-- apply psquare_of_phomotopy, exact !pcompose_pconst ⬝* !pconst_pcompose⁻¹*
|
|||
|
-- end
|
|||
|
|
|||
|
-- definition pequiv_ap_natural2 {X A : Type} (B C : X → A → Type*) {a a' : X → A}
|
|||
|
-- (p : a ~ a')
|
|||
|
-- (s : X → X) (f : Πx a, B x a →* C (s x) a) (x : X) :
|
|||
|
-- psquare (pequiv_ap (B x) (p x)) (pequiv_ap (C (s x)) (p x)) (f x (a x)) (f x (a' x)) :=
|
|||
|
-- begin induction p using homotopy.rec_on_idp, exact phrfl end
|
|||
|
|
|||
|
-- definition pequiv_ap_natural3 {X A : Type} (B C : X → A → Type*) {a a' : A}
|
|||
|
-- (p : a = a')
|
|||
|
-- (s : X → X) (x : X) (f : Πx a, B x a →* C (s x) a) :
|
|||
|
-- psquare (pequiv_ap (B x) p) (pequiv_ap (C (s x)) p) (f x a) (f x a') :=
|
|||
|
-- begin induction p, exact phrfl end
|
|||
|
|
|||
|
-- definition postnikov_smap (X : spectrum) (k : ℤ) :
|
|||
|
-- strunc (k+1) X →ₛ strunc k X :=
|
|||
|
-- smap.mk (λn, postnikov_map_int (X n) (k + n) ∘* ptrunc_int_change_int _ !norm_num.add_comm_middle)
|
|||
|
-- (λn, begin
|
|||
|
-- exact sorry
|
|||
|
-- -- exact (_ ⬝vp* !ap1_pequiv_ap) ⬝h* (!postnikov_map_int_natural_pequiv ⬝v* _ ⬝v* _) ⬝vp* !ap1_pcompose,
|
|||
|
-- end)
|
|||
|
|
|||
|
|
|||
|
-- section atiyah_hirzebruch
|
|||
|
-- parameters {X : Type*} (Y : X → spectrum)
|
|||
|
|
|||
|
-- definition atiyah_hirzebruch_exact_couple : exact_couple rℤ spectrum.I :=
|
|||
|
-- @exact_couple_sequence (λs, strunc s (spi X (λx, Y x)))
|
|||
|
-- (λs, !postnikov_smap ∘ₛ strunc_change_int _ !succ_pred⁻¹)
|
|||
|
|
|||
|
-- -- parameters (k : ℕ) (H : Π(x : X) (n : ℕ), is_trunc (k + n) (Y x n))
|
|||
|
|
|||
|
|
|||
|
|
|||
|
-- end atiyah_hirzebruch
|