2016-11-06 10:01:14 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2016 Ulrik Buchholtz. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
2017-06-17 21:21:28 +00:00
|
|
|
Authors: Ulrik Buchholtz, Floris van Doorn
|
2016-11-06 10:01:14 +00:00
|
|
|
-/
|
|
|
|
|
2017-07-07 21:32:57 +00:00
|
|
|
import homotopy.connectedness types.pointed2 .move_to_lib .pointed
|
2016-11-06 10:01:14 +00:00
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
open eq pointed equiv sigma is_equiv trunc option pi function fiber
|
2016-11-06 10:01:14 +00:00
|
|
|
|
|
|
|
/-
|
2017-06-17 21:21:28 +00:00
|
|
|
In this file we define dependent pointed maps and properties of them.
|
|
|
|
|
|
|
|
Using this, we give the truncation level
|
2016-11-06 10:01:14 +00:00
|
|
|
of the type of pointed maps, giving the connectivity of
|
|
|
|
the domain and the truncation level of the codomain.
|
2017-03-06 06:01:36 +00:00
|
|
|
This is is_trunc_pmap_of_is_conn at the end.
|
2016-11-24 04:54:57 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
We also prove other properties about pointed (dependent maps), like the fact that
|
|
|
|
(Π*a, F a) → (Π*a, X a) → (Π*a, B a)
|
|
|
|
is a fibration sequence if (F a) → (X a) → B a) is.
|
2016-11-06 10:01:14 +00:00
|
|
|
-/
|
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
namespace pointed
|
|
|
|
|
|
|
|
/- the pointed type of unpointed (nondependent) maps -/
|
|
|
|
definition pumap [constructor] (A : Type) (B : Type*) : Type* :=
|
|
|
|
pointed.MK (A → B) (const A pt)
|
|
|
|
|
|
|
|
/- the pointed type of unpointed dependent maps -/
|
|
|
|
definition pupi [constructor] {A : Type} (B : A → Type*) : Type* :=
|
|
|
|
pointed.MK (Πa, B a) (λa, pt)
|
|
|
|
|
|
|
|
notation `Πᵘ*` binders `, ` r:(scoped P, pupi P) := r
|
|
|
|
infix ` →ᵘ* `:30 := pumap
|
|
|
|
|
|
|
|
/- stuff about the pointed type of unpointed maps (dependent and non-dependent) -/
|
|
|
|
definition sigma_pumap {A : Type} (B : A → Type) (C : Type*) :
|
|
|
|
((Σa, B a) →ᵘ* C) ≃* Πᵘ*a, B a →ᵘ* C :=
|
|
|
|
pequiv_of_equiv (equiv_sigma_rec _)⁻¹ᵉ idp
|
|
|
|
|
|
|
|
definition loop_pupi [constructor] {A : Type} (B : A → Type*) : Ω (Πᵘ*a, B a) ≃* Πᵘ*a, Ω (B a) :=
|
|
|
|
pequiv_of_equiv eq_equiv_homotopy idp
|
|
|
|
|
|
|
|
definition phomotopy_mk_pupi [constructor] {A : Type*} {B : Type} {C : B → Type*}
|
|
|
|
{f g : A →* (Πᵘ*b, C b)} (p : f ~2 g)
|
|
|
|
(q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f)) : f ~* g :=
|
|
|
|
begin
|
|
|
|
apply phomotopy.mk (λa, eq_of_homotopy (p a)),
|
|
|
|
apply eq_of_fn_eq_fn eq_equiv_homotopy,
|
|
|
|
apply eq_of_homotopy, intro b,
|
|
|
|
refine !apd10_con ⬝ _,
|
|
|
|
refine whisker_right _ !pi.apd10_eq_of_homotopy ⬝ q b
|
|
|
|
end
|
|
|
|
|
|
|
|
definition pupi_functor [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*}
|
|
|
|
(f : A' → A) (g : Πa, B (f a) →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a', B' a') :=
|
|
|
|
pmap.mk (pi_functor f g) (eq_of_homotopy (λa, respect_pt (g a)))
|
|
|
|
|
|
|
|
definition pupi_functor_right [constructor] {A : Type} {B B' : A → Type*}
|
|
|
|
(g : Πa, B a →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a, B' a) :=
|
|
|
|
pupi_functor id g
|
|
|
|
|
|
|
|
definition pupi_functor_compose {A A' A'' : Type}
|
|
|
|
{B : A → Type*} {B' : A' → Type*} {B'' : A'' → Type*} (f : A'' → A') (f' : A' → A)
|
|
|
|
(g' : Πa, B' (f a) →* B'' a) (g : Πa, B (f' a) →* B' a) :
|
|
|
|
pupi_functor (f' ∘ f) (λa, g' a ∘* g (f a)) ~* pupi_functor f g' ∘* pupi_functor f' g :=
|
|
|
|
begin
|
|
|
|
fapply phomotopy_mk_pupi,
|
|
|
|
{ intro h a, reflexivity },
|
|
|
|
{ intro a, refine !idp_con ⬝ _, refine !apd10_con ⬝ _ ⬝ !pi.apd10_eq_of_homotopy⁻¹, esimp,
|
|
|
|
refine (!apd10_prepostcompose ⬝ ap02 (g' a) !pi.apd10_eq_of_homotopy) ◾
|
|
|
|
!pi.apd10_eq_of_homotopy }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition pupi_functor_pid (A : Type) (B : A → Type*) :
|
|
|
|
pupi_functor id (λa, pid (B a)) ~* pid (Πᵘ*a, B a) :=
|
|
|
|
begin
|
|
|
|
fapply phomotopy_mk_pupi,
|
|
|
|
{ intro h a, reflexivity },
|
|
|
|
{ intro a, refine !idp_con ⬝ !pi.apd10_eq_of_homotopy⁻¹ }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition pupi_functor_phomotopy {A A' : Type} {B : A → Type*} {B' : A' → Type*}
|
|
|
|
{f f' : A' → A} {g : Πa, B (f a) →* B' a} {g' : Πa, B (f' a) →* B' a}
|
|
|
|
(p : f ~ f') (q : Πa, g a ~* g' a ∘* ptransport B (p a)) :
|
|
|
|
pupi_functor f g ~* pupi_functor f' g' :=
|
|
|
|
begin
|
|
|
|
fapply phomotopy_mk_pupi,
|
|
|
|
{ intro h a, exact q a (h (f a)) ⬝ ap (g' a) (apdt h (p a)) },
|
|
|
|
{ intro a, esimp,
|
|
|
|
exact whisker_left _ !pi.apd10_eq_of_homotopy ⬝ !con.assoc ⬝
|
|
|
|
to_homotopy_pt (q a) ⬝ !pi.apd10_eq_of_homotopy⁻¹ }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition pupi_pequiv [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*}
|
|
|
|
(e : A' ≃ A) (f : Πa, B (e a) ≃* B' a) :
|
|
|
|
(Πᵘ*a, B a) ≃* (Πᵘ*a', B' a') :=
|
|
|
|
pequiv.MK (pupi_functor e f)
|
|
|
|
(pupi_functor e⁻¹ᵉ (λa, ptransport B (right_inv e a) ∘* (f (e⁻¹ᵉ a))⁻¹ᵉ*))
|
|
|
|
abstract begin
|
|
|
|
refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_right_inv e) _ ⬝*
|
|
|
|
!pupi_functor_pid,
|
|
|
|
intro a, exact !pinv_pcompose_cancel_right ⬝* !pid_pcompose⁻¹*
|
|
|
|
end end
|
|
|
|
abstract begin
|
|
|
|
refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_left_inv e) _ ⬝*
|
|
|
|
!pupi_functor_pid,
|
|
|
|
intro a, refine !passoc⁻¹* ⬝* pinv_right_phomotopy_of_phomotopy _ ⬝* !pid_pcompose⁻¹*,
|
|
|
|
refine pwhisker_left _ _ ⬝* !ptransport_natural,
|
|
|
|
exact ptransport_change_eq _ (adj e a) ⬝* ptransport_ap B e (to_left_inv e a)
|
|
|
|
end end
|
|
|
|
|
|
|
|
definition pupi_pequiv_right [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a ≃* B' a) :
|
|
|
|
(Πᵘ*a, B a) ≃* (Πᵘ*a, B' a) :=
|
|
|
|
pupi_pequiv erfl f
|
|
|
|
|
|
|
|
definition loop_pumap [constructor] (A : Type) (B : Type*) : Ω (A →ᵘ* B) ≃* A →ᵘ* Ω B :=
|
|
|
|
loop_pupi (λa, B)
|
|
|
|
|
|
|
|
definition phomotopy_mk_pumap [constructor] {A C : Type*} {B : Type} {f g : A →* (B →ᵘ* C)}
|
|
|
|
(p : f ~2 g) (q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f))
|
|
|
|
: f ~* g :=
|
|
|
|
phomotopy_mk_pupi p q
|
|
|
|
|
|
|
|
definition pumap_functor [constructor] {A A' : Type} {B B' : Type*} (f : A' → A) (g : B →* B') :
|
|
|
|
(A →ᵘ* B) →* (A' →ᵘ* B') :=
|
|
|
|
pupi_functor f (λa, g)
|
|
|
|
|
|
|
|
definition pumap_functor_compose {A A' A'' : Type} {B B' B'' : Type*}
|
|
|
|
(f : A'' → A') (f' : A' → A) (g' : B' →* B'') (g : B →* B') :
|
|
|
|
pumap_functor (f' ∘ f) (g' ∘* g) ~* pumap_functor f g' ∘* pumap_functor f' g :=
|
|
|
|
pupi_functor_compose f f' (λa, g') (λa, g)
|
|
|
|
|
|
|
|
definition pumap_functor_pid (A : Type) (B : Type*) :
|
|
|
|
pumap_functor id (pid B) ~* pid (A →ᵘ* B) :=
|
|
|
|
pupi_functor_pid A (λa, B)
|
|
|
|
|
|
|
|
definition pumap_functor_phomotopy {A A' : Type} {B B' : Type*} {f f' : A' → A} {g g' : B →* B'}
|
|
|
|
(p : f ~ f') (q : g ~* g') : pumap_functor f g ~* pumap_functor f' g' :=
|
|
|
|
pupi_functor_phomotopy p (λa, q ⬝* !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ptransport_constant⁻¹*)
|
|
|
|
|
|
|
|
definition pumap_pequiv [constructor] {A A' : Type} {B B' : Type*} (e : A ≃ A') (f : B ≃* B') :
|
|
|
|
(A →ᵘ* B) ≃* (A' →ᵘ* B') :=
|
|
|
|
pupi_pequiv e⁻¹ᵉ (λa, f)
|
|
|
|
|
|
|
|
definition pumap_pequiv_right [constructor] (A : Type) {B B' : Type*} (f : B ≃* B') :
|
|
|
|
(A →ᵘ* B) ≃* (A →ᵘ* B') :=
|
|
|
|
pumap_pequiv erfl f
|
|
|
|
|
|
|
|
definition pumap_pequiv_left [constructor] {A A' : Type} (B : Type*) (f : A ≃ A') :
|
|
|
|
(A →ᵘ* B) ≃* (A' →ᵘ* B) :=
|
|
|
|
pumap_pequiv f pequiv.rfl
|
|
|
|
|
|
|
|
/- the pointed sigma type -/
|
|
|
|
definition psigma_gen [constructor] {A : Type*} (P : A → Type) (x : P pt) : Type* :=
|
|
|
|
pointed.MK (Σa, P a) ⟨pt, x⟩
|
|
|
|
|
|
|
|
definition psigma_gen_functor [constructor] {A A' : Type*} {B : A → Type}
|
|
|
|
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A →* A')
|
|
|
|
(g : Πa, B a → B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b →* psigma_gen B' b' :=
|
|
|
|
pmap.mk (sigma_functor f g) (sigma_eq (respect_pt f) p)
|
|
|
|
|
|
|
|
definition psigma_gen_functor_right [constructor] {A : Type*} {B B' : A → Type}
|
|
|
|
{b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') :
|
|
|
|
psigma_gen B b →* psigma_gen B' b' :=
|
|
|
|
proof pmap.mk (sigma_functor id f) (sigma_eq_right p) qed
|
|
|
|
|
|
|
|
definition psigma_gen_pequiv_psigma_gen [constructor] {A A' : Type*} {B : A → Type}
|
|
|
|
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A ≃* A')
|
|
|
|
(g : Πa, B a ≃ B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b ≃* psigma_gen B' b' :=
|
|
|
|
pequiv_of_equiv (sigma_equiv_sigma f g) (sigma_eq (respect_pt f) p)
|
|
|
|
|
|
|
|
definition psigma_gen_pequiv_psigma_gen_left [constructor] {A A' : Type*} {B : A' → Type}
|
|
|
|
{b : B pt} (f : A ≃* A') {b' : B (f pt)} (q : b' =[respect_pt f] b) :
|
|
|
|
psigma_gen (B ∘ f) b' ≃* psigma_gen B b :=
|
|
|
|
psigma_gen_pequiv_psigma_gen f (λa, erfl) q
|
|
|
|
|
|
|
|
definition psigma_gen_pequiv_psigma_gen_right [constructor] {A : Type*} {B B' : A → Type}
|
|
|
|
{b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') :
|
|
|
|
psigma_gen B b ≃* psigma_gen B' b' :=
|
|
|
|
psigma_gen_pequiv_psigma_gen pequiv.rfl f (pathover_idp_of_eq p)
|
|
|
|
|
|
|
|
definition psigma_gen_pequiv_psigma_gen_basepoint [constructor] {A : Type*} {B : A → Type}
|
|
|
|
{b b' : B pt} (p : b = b') : psigma_gen B b ≃* psigma_gen B b' :=
|
|
|
|
psigma_gen_pequiv_psigma_gen_right (λa, erfl) p
|
|
|
|
|
2017-07-11 13:21:05 +00:00
|
|
|
definition loop_psigma_gen [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) :
|
2017-07-08 21:45:18 +00:00
|
|
|
Ω (psigma_gen B b₀) ≃* @psigma_gen (Ω A) (λp, pathover B b₀ p b₀) idpo :=
|
|
|
|
pequiv_of_equiv (sigma_eq_equiv pt pt) idp
|
|
|
|
|
2017-07-11 13:21:05 +00:00
|
|
|
open sigma.ops
|
|
|
|
definition ap1_gen_sigma {A A' : Type} {B : A → Type} {B' : A' → Type}
|
|
|
|
{x₀ x₁ : Σa, B a} {a₀' a₁' : A'} {b₀' : B' a₀'} {b₁' : B' a₁'} (f : A → A')
|
|
|
|
(p₀ : f x₀.1 = a₀') (p₁ : f x₁.1 = a₁') (g : Πa, B a → B' (f a))
|
|
|
|
(q₀ : g x₀.1 x₀.2 =[p₀] b₀') (q₁ : g x₁.1 x₁.2 =[p₁] b₁') (r : x₀ = x₁) :
|
|
|
|
(λx, ⟨x..1, x..2⟩) (ap1_gen (sigma_functor f g) (sigma_eq p₀ q₀) (sigma_eq p₁ q₁) r) =
|
|
|
|
⟨ap1_gen f p₀ p₁ r..1, q₀⁻¹ᵒ ⬝o pathover_ap B' f (apo g r..2) ⬝o q₁⟩ :=
|
|
|
|
begin
|
|
|
|
induction r, induction q₀, induction q₁, reflexivity
|
|
|
|
end
|
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
definition loop_psigma_gen_natural {A A' : Type*} {B : A → Type}
|
|
|
|
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A →* A')
|
|
|
|
(g : Πa, B a → B' (f a)) (p : g pt b =[respect_pt f] b') :
|
|
|
|
psquare (Ω→ (psigma_gen_functor f g p))
|
|
|
|
(psigma_gen_functor (Ω→ f) (λq r, p⁻¹ᵒ ⬝o pathover_ap _ _ (apo g r) ⬝o p)
|
|
|
|
!cono.left_inv)
|
|
|
|
(loop_psigma_gen B b) (loop_psigma_gen B' b') :=
|
2017-07-11 13:21:05 +00:00
|
|
|
begin
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
{ exact ap1_gen_sigma f (respect_pt f) (respect_pt f) g p p },
|
2017-07-11 14:19:08 +00:00
|
|
|
{ induction f with f f₀, induction A' with A' a₀', esimp at * ⊢, induction p, reflexivity }
|
2017-07-11 13:21:05 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
definition psigma_gen_functor_pcompose [constructor] {A₁ A₂ A₃ : Type*}
|
|
|
|
{B₁ : A₁ → Type} {B₂ : A₂ → Type} {B₃ : A₃ → Type}
|
|
|
|
{b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt}
|
|
|
|
{f₁ : A₁ →* A₂} {f₂ : A₂ →* A₃}
|
|
|
|
(g₁ : Π⦃a⦄, B₁ a → B₂ (f₁ a)) (g₂ : Π⦃a⦄, B₂ a → B₃ (f₂ a))
|
|
|
|
(p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂)
|
|
|
|
(p₂ : pathover B₃ (g₂ b₂) (respect_pt f₂) b₃) :
|
|
|
|
psigma_gen_functor (f₂ ∘* f₁) (λa, @g₂ (f₁ a) ∘ @g₁ a) (pathover_ap B₃ f₂ (apo g₂ p₁) ⬝o p₂) ~*
|
|
|
|
psigma_gen_functor f₂ g₂ p₂ ∘* psigma_gen_functor f₁ g₁ p₁ :=
|
|
|
|
begin
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
{ intro x, reflexivity },
|
|
|
|
{ refine !idp_con ⬝ _, esimp,
|
|
|
|
refine whisker_right _ !ap_sigma_functor_eq_dpair ⬝ _,
|
|
|
|
induction f₁ with f₁ f₁₀, induction f₂ with f₂ f₂₀, induction A₂ with A₂ a₂₀,
|
|
|
|
induction A₃ with A₃ a₃₀, esimp at * ⊢, induction p₁, induction p₂, reflexivity }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition psigma_gen_functor_phomotopy [constructor] {A₁ A₂ : Type*}
|
|
|
|
{B₁ : A₁ → Type} {B₂ : A₂ → Type} {b₁ : B₁ pt} {b₂ : B₂ pt} {f₁ f₂ : A₁ →* A₂}
|
|
|
|
{g₁ : Π⦃a⦄, B₁ a → B₂ (f₁ a)} {g₂ : Π⦃a⦄, B₁ a → B₂ (f₂ a)}
|
|
|
|
{p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂} {p₂ : pathover B₂ (g₂ b₁) (respect_pt f₂) b₂}
|
|
|
|
(h₁ : f₁ ~* f₂)
|
|
|
|
(h₂ : Π⦃a⦄ (b : B₁ a), pathover B₂ (g₁ b) (h₁ a) (g₂ b))
|
2017-07-11 14:19:08 +00:00
|
|
|
(h₃ : squareover B₂ (square_of_eq (to_homotopy_pt h₁)⁻¹) p₁ p₂ (h₂ b₁) idpo) :
|
2017-07-11 13:21:05 +00:00
|
|
|
psigma_gen_functor f₁ g₁ p₁ ~* psigma_gen_functor f₂ g₂ p₂ :=
|
|
|
|
begin
|
2017-07-11 14:19:08 +00:00
|
|
|
induction h₁ using phomotopy_rec_on_idp,
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
{ intro x, induction x with a b, exact ap (dpair (f₁ a)) (eq_of_pathover_idp (h₂ b)) },
|
|
|
|
{ induction f₁ with f f₀, induction A₂ with A₂ a₂₀, esimp at * ⊢,
|
|
|
|
induction f₀, esimp, induction p₂ using idp_rec_on,
|
|
|
|
rewrite [to_right_inv !eq_con_inv_equiv_con_eq at h₃],
|
|
|
|
have h₂ b₁ = p₁, from (eq_top_of_squareover h₃)⁻¹, induction this,
|
|
|
|
refine !ap_dpair ⬝ ap (sigma_eq _) _, exact to_left_inv !pathover_idp (h₂ b₁) }
|
2017-07-11 13:21:05 +00:00
|
|
|
end
|
2017-07-08 21:45:18 +00:00
|
|
|
|
|
|
|
definition psigma_gen_functor_psquare [constructor] {A₀₀ A₀₂ A₂₀ A₂₂ : Type*}
|
|
|
|
{B₀₀ : A₀₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₀ : A₂₀ → Type} {B₂₂ : A₂₂ → Type}
|
|
|
|
{b₀₀ : B₀₀ pt} {b₀₂ : B₀₂ pt} {b₂₀ : B₂₀ pt} {b₂₂ : B₂₂ pt}
|
|
|
|
{f₀₁ : A₀₀ →* A₀₂} {f₁₀ : A₀₀ →* A₂₀} {f₂₁ : A₂₀ →* A₂₂} {f₁₂ : A₀₂ →* A₂₂}
|
|
|
|
{g₀₁ : Π⦃a⦄, B₀₀ a → B₀₂ (f₀₁ a)} {g₁₀ : Π⦃a⦄, B₀₀ a → B₂₀ (f₁₀ a)}
|
|
|
|
{g₂₁ : Π⦃a⦄, B₂₀ a → B₂₂ (f₂₁ a)} {g₁₂ : Π⦃a⦄, B₀₂ a → B₂₂ (f₁₂ a)}
|
2017-07-11 13:21:05 +00:00
|
|
|
{p₀₁ : pathover B₀₂ (g₀₁ b₀₀) (respect_pt f₀₁) b₀₂}
|
|
|
|
{p₁₀ : pathover B₂₀ (g₁₀ b₀₀) (respect_pt f₁₀) b₂₀}
|
|
|
|
{p₂₁ : pathover B₂₂ (g₂₁ b₂₀) (respect_pt f₂₁) b₂₂}
|
|
|
|
{p₁₂ : pathover B₂₂ (g₁₂ b₀₂) (respect_pt f₁₂) b₂₂}
|
2017-07-08 21:45:18 +00:00
|
|
|
(h₁ : psquare f₁₀ f₁₂ f₀₁ f₂₁)
|
|
|
|
(h₂ : Π⦃a⦄ (b : B₀₀ a), pathover B₂₂ (g₂₁ (g₁₀ b)) (h₁ a) (g₁₂ (g₀₁ b)))
|
2017-07-11 14:19:08 +00:00
|
|
|
(h₃ : squareover B₂₂ (square_of_eq (to_homotopy_pt h₁)⁻¹)
|
2017-07-08 21:45:18 +00:00
|
|
|
(pathover_ap B₂₂ f₂₁ (apo g₂₁ p₁₀) ⬝o p₂₁)
|
|
|
|
(pathover_ap B₂₂ f₁₂ (apo g₁₂ p₀₁) ⬝o p₁₂)
|
|
|
|
(h₂ b₀₀) idpo) :
|
|
|
|
psquare (psigma_gen_functor f₁₀ g₁₀ p₁₀) (psigma_gen_functor f₁₂ g₁₂ p₁₂)
|
|
|
|
(psigma_gen_functor f₀₁ g₀₁ p₀₁) (psigma_gen_functor f₂₁ g₂₁ p₂₁) :=
|
2017-07-11 13:21:05 +00:00
|
|
|
proof
|
2017-07-11 14:19:08 +00:00
|
|
|
!psigma_gen_functor_pcompose⁻¹* ⬝*
|
|
|
|
psigma_gen_functor_phomotopy h₁ h₂ h₃ ⬝*
|
|
|
|
!psigma_gen_functor_pcompose
|
2017-07-11 13:21:05 +00:00
|
|
|
qed
|
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
|
|
|
|
end pointed open pointed
|
|
|
|
|
2016-11-06 10:01:14 +00:00
|
|
|
namespace pointed
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition pointed_respect_pt [instance] [constructor] {A B : Type*} (f : A →* B) :
|
|
|
|
pointed (f pt = pt) :=
|
|
|
|
pointed.mk (respect_pt f)
|
|
|
|
|
|
|
|
definition ppi_gen_of_phomotopy [constructor] {A B : Type*} {f g : A →* B} (h : f ~* g) :
|
|
|
|
ppi_gen (λx, f x = g x) (respect_pt f ⬝ (respect_pt g)⁻¹) :=
|
|
|
|
h
|
|
|
|
|
2016-11-06 10:01:14 +00:00
|
|
|
abbreviation ppi_resp_pt [unfold 3] := @ppi.resp_pt
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi_const [constructor] {A : Type*} (P : A → Type*) : ppi P :=
|
2017-05-24 12:25:58 +00:00
|
|
|
ppi.mk (λa, pt) idp
|
|
|
|
|
2016-11-06 10:01:14 +00:00
|
|
|
definition pointed_ppi [instance] [constructor] {A : Type*}
|
2017-06-17 21:21:28 +00:00
|
|
|
(P : A → Type*) : pointed (ppi P) :=
|
2017-05-24 12:25:58 +00:00
|
|
|
pointed.mk (ppi_const P)
|
2016-11-06 10:01:14 +00:00
|
|
|
|
|
|
|
definition pppi [constructor] {A : Type*} (P : A → Type*) : Type* :=
|
2017-06-17 21:21:28 +00:00
|
|
|
pointed.mk' (ppi P)
|
2016-11-06 10:01:14 +00:00
|
|
|
|
|
|
|
notation `Π*` binders `, ` r:(scoped P, pppi P) := r
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi_homotopy {A : Type*} {P : A → Type} {x : P pt} (f g : ppi_gen P x) : Type :=
|
|
|
|
ppi_gen (λa, f a = g a) (ppi_gen.resp_pt f ⬝ (ppi_gen.resp_pt g)⁻¹)
|
2016-11-06 10:01:14 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
variables {A : Type*} {P Q R : A → Type*} {f g h : Π*a, P a}
|
|
|
|
{B : A → Type} {x₀ : B pt} {k l m : ppi_gen B x₀}
|
2016-11-06 10:01:14 +00:00
|
|
|
|
|
|
|
infix ` ~~* `:50 := ppi_homotopy
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi_homotopy.mk [constructor] [reducible] (h : k ~ l)
|
|
|
|
(p : h pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k) : k ~~* l :=
|
|
|
|
ppi_gen.mk h (eq_con_inv_of_con_eq p)
|
|
|
|
definition ppi_to_homotopy [coercion] [unfold 6] [reducible] (p : k ~~* l) : Πa, k a = l a := p
|
|
|
|
definition ppi_to_homotopy_pt [unfold 6] [reducible] (p : k ~~* l) :
|
|
|
|
p pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k :=
|
|
|
|
con_eq_of_eq_con_inv (ppi_gen.resp_pt p)
|
|
|
|
|
|
|
|
variable (k)
|
|
|
|
protected definition ppi_homotopy.refl : k ~~* k :=
|
2017-06-28 12:14:48 +00:00
|
|
|
ppi_homotopy.mk homotopy.rfl !idp_con
|
2017-06-17 21:21:28 +00:00
|
|
|
variable {k}
|
|
|
|
protected definition ppi_homotopy.rfl [refl] : k ~~* k :=
|
|
|
|
ppi_homotopy.refl k
|
2017-05-24 12:25:58 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
protected definition ppi_homotopy.symm [symm] (p : k ~~* l) : l ~~* k :=
|
2017-06-28 12:14:48 +00:00
|
|
|
ppi_homotopy.mk p⁻¹ʰᵗʸ (inv_con_eq_of_eq_con (ppi_to_homotopy_pt p)⁻¹)
|
2017-05-24 12:25:58 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
protected definition ppi_homotopy.trans [trans] (p : k ~~* l) (q : l ~~* m) : k ~~* m :=
|
2017-06-28 12:14:48 +00:00
|
|
|
ppi_homotopy.mk (λa, p a ⬝ q a) (!con.assoc ⬝ whisker_left (p pt) (ppi_to_homotopy_pt q) ⬝ ppi_to_homotopy_pt p)
|
2017-05-24 12:25:58 +00:00
|
|
|
|
|
|
|
infix ` ⬝*' `:75 := ppi_homotopy.trans
|
|
|
|
postfix `⁻¹*'`:(max+1) := ppi_homotopy.symm
|
|
|
|
|
2017-07-08 17:20:43 +00:00
|
|
|
definition ppi_trans_refl (p : k ~~* l) : p ⬝*' ppi_homotopy.refl l = p :=
|
|
|
|
begin
|
|
|
|
unfold ppi_homotopy.trans,
|
|
|
|
induction A with A a₀,
|
2017-07-11 13:21:05 +00:00
|
|
|
induction k with k k₀, induction l with l l₀, induction p with p p₀, esimp at p, induction l₀, esimp at p₀, induction p₀, reflexivity,
|
2017-07-08 17:20:43 +00:00
|
|
|
end
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
definition ppi_equiv_pmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃ (A →* B) :=
|
2016-11-06 10:01:14 +00:00
|
|
|
begin
|
|
|
|
fapply equiv.MK,
|
2017-06-17 21:21:28 +00:00
|
|
|
{ intro k, induction k with k p, exact pmap.mk k p },
|
|
|
|
{ intro k, induction k with k p, exact ppi.mk k p },
|
|
|
|
{ intro k, induction k with k p, reflexivity },
|
|
|
|
{ intro k, induction k with k p, reflexivity }
|
2016-11-06 10:01:14 +00:00
|
|
|
end
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
definition pppi_pequiv_ppmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃* ppmap A B :=
|
2017-06-17 21:21:28 +00:00
|
|
|
pequiv_of_equiv (ppi_equiv_pmap A B) idp
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
protected definition ppi_gen.sigma_char [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) :
|
|
|
|
ppi_gen B b₀ ≃ Σ(k : Πa, B a), k pt = b₀ :=
|
|
|
|
begin
|
|
|
|
fapply equiv.MK: intro x,
|
|
|
|
{ constructor, exact ppi_gen.resp_pt x },
|
|
|
|
{ induction x, constructor, assumption },
|
|
|
|
{ induction x, reflexivity },
|
|
|
|
{ induction x, reflexivity }
|
|
|
|
end
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi.sigma_char [constructor] {A : Type*} (B : A → Type*)
|
|
|
|
: (Π*(a : A), B a) ≃ Σ(k : (Π (a : A), B a)), k pt = pt :=
|
2016-11-06 10:01:14 +00:00
|
|
|
begin
|
2017-06-17 21:21:28 +00:00
|
|
|
fapply equiv.MK : intros k,
|
|
|
|
{ exact ⟨ k , ppi_resp_pt k ⟩ },
|
|
|
|
all_goals cases k with k p,
|
|
|
|
{ exact ppi.mk k p },
|
2016-11-06 10:01:14 +00:00
|
|
|
all_goals reflexivity
|
|
|
|
end
|
|
|
|
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
variables (k l)
|
|
|
|
|
|
|
|
definition ppi_homotopy.rec' [recursor] (B : k ~~* l → Type)
|
|
|
|
(H : Π(h : k ~ l) (p : h pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k), B (ppi_homotopy.mk h p))
|
|
|
|
(h : k ~~* l) : B h :=
|
|
|
|
begin
|
|
|
|
induction h with h p,
|
|
|
|
refine transport (λp, B (ppi_gen.mk h p)) _ (H h (con_eq_of_eq_con_inv p)),
|
|
|
|
apply to_left_inv !eq_con_inv_equiv_con_eq p
|
|
|
|
end
|
2016-11-06 10:01:14 +00:00
|
|
|
|
|
|
|
definition ppi_homotopy.sigma_char [constructor]
|
2017-06-17 21:21:28 +00:00
|
|
|
: (k ~~* l) ≃ Σ(p : k ~ l), p pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k :=
|
2016-11-06 10:01:14 +00:00
|
|
|
begin
|
|
|
|
fapply equiv.MK : intros h,
|
|
|
|
{ exact ⟨h , ppi_to_homotopy_pt h⟩ },
|
2017-06-17 21:21:28 +00:00
|
|
|
{ cases h with h p, exact ppi_homotopy.mk h p },
|
|
|
|
{ cases h with h p, exact ap (dpair h) (to_right_inv !eq_con_inv_equiv_con_eq p) },
|
|
|
|
{ induction h using ppi_homotopy.rec' with h p,
|
|
|
|
exact ap (ppi_homotopy.mk h) (to_right_inv !eq_con_inv_equiv_con_eq p) }
|
2016-11-06 10:01:14 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
-- the same as pmap_eq_equiv
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi_eq_equiv : (k = l) ≃ (k ~~* l) :=
|
|
|
|
calc (k = l) ≃ ppi_gen.sigma_char B x₀ k = ppi_gen.sigma_char B x₀ l
|
|
|
|
: eq_equiv_fn_eq (ppi_gen.sigma_char B x₀) k l
|
|
|
|
... ≃ Σ(p : k = l),
|
|
|
|
pathover (λh, h pt = x₀) (ppi_gen.resp_pt k) p (ppi_gen.resp_pt l)
|
2016-11-06 10:01:14 +00:00
|
|
|
: sigma_eq_equiv _ _
|
2017-06-17 21:21:28 +00:00
|
|
|
... ≃ Σ(p : k = l),
|
|
|
|
ppi_gen.resp_pt k = ap (λh, h pt) p ⬝ ppi_gen.resp_pt l
|
2016-11-06 10:01:14 +00:00
|
|
|
: sigma_equiv_sigma_right
|
2017-06-17 21:21:28 +00:00
|
|
|
(λp, eq_pathover_equiv_Fl p (ppi_gen.resp_pt k) (ppi_gen.resp_pt l))
|
|
|
|
... ≃ Σ(p : k = l),
|
|
|
|
ppi_gen.resp_pt k = apd10 p pt ⬝ ppi_gen.resp_pt l
|
2016-11-06 10:01:14 +00:00
|
|
|
: sigma_equiv_sigma_right
|
2016-11-24 04:54:57 +00:00
|
|
|
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
2017-06-17 21:21:28 +00:00
|
|
|
... ≃ Σ(p : k ~ l), ppi_gen.resp_pt k = p pt ⬝ ppi_gen.resp_pt l
|
2016-11-06 10:01:14 +00:00
|
|
|
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
2017-06-17 21:21:28 +00:00
|
|
|
... ≃ Σ(p : k ~ l), p pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k
|
2016-11-06 10:01:14 +00:00
|
|
|
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
2017-06-17 21:21:28 +00:00
|
|
|
... ≃ (k ~~* l) : ppi_homotopy.sigma_char k l
|
|
|
|
|
|
|
|
-- the same as pmap_eq
|
|
|
|
variables {k l}
|
|
|
|
definition ppi_eq (h : k ~~* l) : k = l :=
|
|
|
|
(ppi_eq_equiv k l)⁻¹ᵉ h
|
|
|
|
|
|
|
|
definition eq_of_ppi_homotopy (h : k ~~* l) : k = l := ppi_eq h
|
2016-11-06 10:01:14 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi_homotopy_of_eq (p : k = l) : k ~~* l := ppi_eq_equiv k l p
|
|
|
|
|
|
|
|
definition ppi_homotopy_of_eq_of_ppi_homotopy (h : k ~~* l) :
|
|
|
|
ppi_homotopy_of_eq (eq_of_ppi_homotopy h) = h :=
|
|
|
|
to_right_inv (ppi_eq_equiv k l) h
|
|
|
|
|
2017-07-05 13:56:03 +00:00
|
|
|
variable (k)
|
|
|
|
|
|
|
|
definition eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl : ppi_homotopy.refl k = ppi_homotopy_of_eq (refl k) :=
|
|
|
|
begin
|
|
|
|
induction k with k p,
|
2017-07-07 21:32:57 +00:00
|
|
|
induction p, reflexivity
|
2017-07-05 13:56:03 +00:00
|
|
|
end
|
|
|
|
|
2017-07-11 13:21:05 +00:00
|
|
|
definition ppi_homotopy_of_eq_refl
|
2017-07-08 17:20:43 +00:00
|
|
|
: ppi_homotopy.refl k = ppi_homotopy_of_eq (refl k)
|
|
|
|
:=
|
|
|
|
begin
|
|
|
|
induction k with k k₀, induction k₀, reflexivity,
|
|
|
|
end
|
|
|
|
|
|
|
|
definition ppi_homotopy_of_eq_con {A : Type*} {B : A → Type*} {f g h : Π* (a : A), B a} (p : f = g) (q : g = h) :
|
|
|
|
ppi_homotopy_of_eq (p ⬝ q) = ppi_homotopy_of_eq p ⬝*' ppi_homotopy_of_eq q :=
|
2017-07-11 13:21:05 +00:00
|
|
|
begin induction q, induction p,
|
2017-07-08 17:20:43 +00:00
|
|
|
fapply eq_of_ppi_homotopy,
|
|
|
|
rewrite [!idp_con],
|
|
|
|
refine transport (λ x, x ~~* x ⬝*' x) !ppi_homotopy_of_eq_refl _,
|
|
|
|
fapply ppi_homotopy_of_eq,
|
2017-07-11 13:21:05 +00:00
|
|
|
refine (ppi_trans_refl (ppi_homotopy.refl f))⁻¹
|
2017-07-08 17:20:43 +00:00
|
|
|
end
|
|
|
|
|
2017-07-11 13:21:05 +00:00
|
|
|
-- definition ppi_homotopy_of_eq_of_ppi_homotopy
|
2017-07-08 17:20:43 +00:00
|
|
|
|
2017-07-11 13:21:05 +00:00
|
|
|
definition ppi_homotopy_mk_ppmap [constructor]
|
|
|
|
{A : Type*} {X : A → Type*} {Y : Π (a : A), X a → Type*}
|
|
|
|
{f g : Π* (a : A), Π*(x : (X a)), (Y a x)}
|
2017-07-08 17:20:43 +00:00
|
|
|
(p : Πa, f a ~~* g a)
|
|
|
|
(q : p pt ⬝*' ppi_homotopy_of_eq (ppi_resp_pt g) = ppi_homotopy_of_eq (ppi_resp_pt f))
|
|
|
|
: f ~~* g :=
|
|
|
|
begin
|
|
|
|
apply ppi_homotopy.mk (λa, eq_of_ppi_homotopy (p a)),
|
|
|
|
apply eq_of_fn_eq_fn (ppi_eq_equiv _ _),
|
|
|
|
refine !ppi_homotopy_of_eq_con ⬝ _,
|
|
|
|
repeat exact sorry
|
|
|
|
-- refine !ppi_homotopy_of_eq_of_ppi_homotopy ◾** idp ⬝ q,
|
|
|
|
end
|
|
|
|
|
2017-07-05 14:51:52 +00:00
|
|
|
variable {k}
|
|
|
|
|
2017-07-05 13:56:03 +00:00
|
|
|
definition ppi_homotopy_rec_on_eq [recursor] {k' : ppi_gen B x₀}
|
|
|
|
{Q : (k ~~* k') → Type} (p : k ~~* k') (H : Π(q : k = k'), Q (ppi_homotopy_of_eq q)) : Q p :=
|
|
|
|
ppi_homotopy_of_eq_of_ppi_homotopy p ▸ H (eq_of_ppi_homotopy p)
|
|
|
|
|
|
|
|
definition ppi_homotopy_rec_on_idp [recursor]
|
|
|
|
{Q : Π {k' : ppi_gen B x₀}, (k ~~* k') → Type}
|
|
|
|
(q : Q (ppi_homotopy.refl k)) {k' : ppi_gen B x₀} (H : k ~~* k') : Q H :=
|
|
|
|
begin
|
|
|
|
induction H using ppi_homotopy_rec_on_eq with t,
|
|
|
|
induction t, exact eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl k ▸ q,
|
|
|
|
end
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
variables (k l)
|
2017-07-08 08:48:11 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
definition ppi_loop_equiv : (k = k) ≃ Π*(a : A), Ω (pType.mk (B a) (k a)) :=
|
2017-07-08 08:48:11 +00:00
|
|
|
begin
|
|
|
|
induction k with k p, induction p,
|
|
|
|
exact ppi_eq_equiv (ppi_gen.mk k idp) (ppi_gen.mk k idp)
|
|
|
|
end
|
2016-11-06 10:01:14 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
variables {k l}
|
|
|
|
-- definition eq_of_ppi_homotopy (h : k ~~* l) : k = l :=
|
|
|
|
-- (ppi_eq_equiv k l)⁻¹ᵉ h
|
2017-05-24 12:25:58 +00:00
|
|
|
|
|
|
|
definition pmap_compose_ppi [constructor] (g : Π(a : A), ppmap (P a) (Q a))
|
|
|
|
(f : Π*(a : A), P a) : Π*(a : A), Q a :=
|
|
|
|
proof ppi.mk (λa, g a (f a)) (ap (g pt) (ppi.resp_pt f) ⬝ respect_pt (g pt)) qed
|
|
|
|
|
|
|
|
definition pmap_compose_ppi_const_right (g : Π(a : A), ppmap (P a) (Q a)) :
|
|
|
|
pmap_compose_ppi g (ppi_const P) ~~* ppi_const Q :=
|
|
|
|
proof ppi_homotopy.mk (λa, respect_pt (g a)) !idp_con⁻¹ qed
|
|
|
|
|
|
|
|
definition pmap_compose_ppi_const_left (f : Π*(a : A), P a) :
|
|
|
|
pmap_compose_ppi (λa, pconst (P a) (Q a)) f ~~* ppi_const Q :=
|
2017-06-28 12:14:48 +00:00
|
|
|
ppi_homotopy.mk homotopy.rfl !ap_constant⁻¹
|
2017-05-24 12:25:58 +00:00
|
|
|
|
|
|
|
definition ppi_compose_left [constructor] (g : Π(a : A), ppmap (P a) (Q a)) :
|
|
|
|
(Π*(a : A), P a) →* Π*(a : A), Q a :=
|
2017-06-17 21:21:28 +00:00
|
|
|
pmap.mk (pmap_compose_ppi g) (ppi_eq (pmap_compose_ppi_const_right g))
|
2017-05-24 12:25:58 +00:00
|
|
|
|
2017-07-08 14:25:17 +00:00
|
|
|
-- ppi_compose_left is associative in the following sense.
|
|
|
|
definition ppi_assoc_compose_left {A : Type*} {B C D : A → Type*}
|
|
|
|
(f : Π (a : A), B a →* C a) (g : Π (a : A), C a →* D a)
|
|
|
|
: (ppi_compose_left g ∘* ppi_compose_left f) ~* ppi_compose_left (λ a, g a ∘* f a) :=
|
|
|
|
begin
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
intro h, fapply eq_of_ppi_homotopy,
|
|
|
|
fapply ppi_homotopy.mk,
|
2017-07-08 17:20:43 +00:00
|
|
|
intro a, reflexivity,
|
|
|
|
refine !idp_con ⬝ _,
|
2017-07-08 14:25:17 +00:00
|
|
|
-- esimp,
|
|
|
|
repeat exact sorry,
|
|
|
|
end /- TODO FOR SSS -/
|
|
|
|
|
|
|
|
definition psquare_of_ppi_compose_left {A : Type*} {B C D E : A → Type*}
|
|
|
|
{ftop : Π (a : A), B a →* C a} {fbot : Π (a : A), D a →* E a}
|
|
|
|
{fleft : Π (a : A), B a →* D a} {fright : Π (a : A), C a →* E a}
|
|
|
|
(psq : Π (a :A), psquare (ftop a) (fbot a) (fleft a) (fright a))
|
|
|
|
: psquare
|
|
|
|
(ppi_compose_left ftop)
|
|
|
|
(ppi_compose_left fbot)
|
|
|
|
(ppi_compose_left fleft)
|
|
|
|
(ppi_compose_left fright)
|
|
|
|
:=
|
|
|
|
begin
|
|
|
|
refine (ppi_assoc_compose_left ftop fright) ⬝* _ ⬝* (ppi_assoc_compose_left fleft fbot)⁻¹*,
|
|
|
|
refine eq_of_homotopy (λ a, eq_of_phomotopy (psq a)) ▸ phomotopy.rfl,
|
|
|
|
-- the last step is probably an unnecessary application of function extensionality.
|
|
|
|
end
|
|
|
|
|
2017-05-24 12:25:58 +00:00
|
|
|
definition pmap_compose_ppi_phomotopy_left [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)}
|
|
|
|
(f : Π*(a : A), P a) (p : Πa, g a ~* g' a) : pmap_compose_ppi g f ~~* pmap_compose_ppi g' f :=
|
2017-06-28 12:14:48 +00:00
|
|
|
ppi_homotopy.mk (λa, p a (f a))
|
|
|
|
abstract !con.assoc⁻¹ ⬝ whisker_right _ !ap_con_eq_con_ap⁻¹ ⬝ !con.assoc ⬝
|
|
|
|
whisker_left _ (to_homotopy_pt (p pt)) end
|
2017-05-24 12:25:58 +00:00
|
|
|
|
|
|
|
definition pmap_compose_ppi_pid_left [constructor]
|
|
|
|
(f : Π*(a : A), P a) : pmap_compose_ppi (λa, pid (P a)) f ~~* f :=
|
2017-06-28 12:14:48 +00:00
|
|
|
ppi_homotopy.mk homotopy.rfl idp
|
2017-05-24 12:25:58 +00:00
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
definition pmap_compose_ppi_pcompose [constructor] (h : Π(a : A), ppmap (Q a) (R a))
|
2017-05-24 12:25:58 +00:00
|
|
|
(g : Π(a : A), ppmap (P a) (Q a)) :
|
2017-06-28 12:14:48 +00:00
|
|
|
pmap_compose_ppi (λa, h a ∘* g a) f ~~* pmap_compose_ppi h (pmap_compose_ppi g f) :=
|
|
|
|
ppi_homotopy.mk homotopy.rfl
|
|
|
|
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end
|
2017-05-24 12:25:58 +00:00
|
|
|
|
|
|
|
definition ppi_pequiv_right [constructor] (g : Π(a : A), P a ≃* Q a) :
|
|
|
|
(Π*(a : A), P a) ≃* Π*(a : A), Q a :=
|
|
|
|
begin
|
|
|
|
apply pequiv_of_pmap (ppi_compose_left g),
|
|
|
|
apply adjointify _ (ppi_compose_left (λa, (g a)⁻¹ᵉ*)),
|
2017-06-17 21:21:28 +00:00
|
|
|
{ intro f, apply ppi_eq,
|
2017-06-28 12:14:48 +00:00
|
|
|
refine !pmap_compose_ppi_pcompose⁻¹*' ⬝*' _,
|
2017-05-24 12:25:58 +00:00
|
|
|
refine pmap_compose_ppi_phomotopy_left _ (λa, !pright_inv) ⬝*' _,
|
|
|
|
apply pmap_compose_ppi_pid_left },
|
2017-06-17 21:21:28 +00:00
|
|
|
{ intro f, apply ppi_eq,
|
2017-06-28 12:14:48 +00:00
|
|
|
refine !pmap_compose_ppi_pcompose⁻¹*' ⬝*' _,
|
2017-05-24 12:25:58 +00:00
|
|
|
refine pmap_compose_ppi_phomotopy_left _ (λa, !pleft_inv) ⬝*' _,
|
|
|
|
apply pmap_compose_ppi_pid_left }
|
|
|
|
end
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
end pointed
|
2017-07-08 21:45:18 +00:00
|
|
|
|
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
namespace pointed
|
|
|
|
|
|
|
|
variables {A B C : Type*}
|
|
|
|
|
|
|
|
-- TODO: replace in types.fiber
|
|
|
|
definition pfiber.sigma_char' (f : A →* B) :
|
|
|
|
pfiber f ≃* psigma_gen (λa, f a = pt) (respect_pt f) :=
|
|
|
|
pequiv_of_equiv (fiber.sigma_char f pt) idp
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
definition ppmap.sigma_char [constructor] (A B : Type*) :
|
|
|
|
ppmap A B ≃* @psigma_gen (A →ᵘ* B) (λf, f pt = pt) idp :=
|
2017-06-17 21:21:28 +00:00
|
|
|
pequiv_of_equiv pmap.sigma_char idp
|
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
definition pppi.sigma_char [constructor] (B : A → Type*) :
|
2017-06-28 12:14:48 +00:00
|
|
|
(Π*(a : A), B a) ≃* @psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp :=
|
2017-06-17 21:21:28 +00:00
|
|
|
proof pequiv_of_equiv !ppi.sigma_char idp qed
|
|
|
|
|
2017-07-11 13:21:05 +00:00
|
|
|
definition pppi_sigma_char_natural_bottom [constructor] {B B' : A → Type*} (f : Πa, B a →* B' a) :
|
2017-07-08 21:45:18 +00:00
|
|
|
@psigma_gen (Πᵘ*a, B a) (λg, g pt = pt) idp →* @psigma_gen (Πᵘ*a, B' a) (λg, g pt = pt) idp :=
|
|
|
|
psigma_gen_functor
|
|
|
|
(pupi_functor_right f)
|
|
|
|
(λg p, ap (f pt) p ⬝ respect_pt (f pt))
|
|
|
|
begin
|
|
|
|
apply eq_pathover_constant_right, apply square_of_eq,
|
|
|
|
esimp, exact !idp_con ⬝ !apd10_eq_of_homotopy⁻¹ ⬝ !ap_eq_apd10⁻¹,
|
|
|
|
end
|
|
|
|
|
|
|
|
definition pppi_sigma_char_natural {B B' : A → Type*} (f : Πa, B a →* B' a) :
|
|
|
|
psquare (ppi_compose_left f) (pppi_sigma_char_natural_bottom f)
|
|
|
|
(pppi.sigma_char B) (pppi.sigma_char B') :=
|
2017-07-11 13:21:05 +00:00
|
|
|
begin
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
{ intro g, reflexivity },
|
|
|
|
{ refine !idp_con ⬝ !idp_con ⬝ _, esimp,
|
|
|
|
fapply sigma_eq2,
|
|
|
|
{ refine !sigma_eq_pr1 ⬝ _ ⬝ !ap_sigma_pr1⁻¹, exact sorry },
|
|
|
|
{ exact sorry }}
|
|
|
|
end /- TODO FOR SSS -/
|
2017-06-17 21:21:28 +00:00
|
|
|
|
|
|
|
definition ppi_gen_functor_right [constructor] {A : Type*} {B B' : A → Type}
|
|
|
|
{b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') (g : ppi_gen B b)
|
|
|
|
: ppi_gen B' b' :=
|
|
|
|
ppi_gen.mk (λa, f a (g a)) (ap (f pt) (ppi_gen.resp_pt g) ⬝ p)
|
|
|
|
|
|
|
|
definition ppi_gen_functor_right_compose [constructor] {A : Type*} {B₁ B₂ B₃ : A → Type}
|
|
|
|
{b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt} (f₂ : Πa, B₂ a → B₃ a) (p₂ : f₂ pt b₂ = b₃)
|
|
|
|
(f₁ : Πa, B₁ a → B₂ a) (p₁ : f₁ pt b₁ = b₂)
|
|
|
|
(g : ppi_gen B₁ b₁) : ppi_gen_functor_right (λa, f₂ a ∘ f₁ a) (ap (f₂ pt) p₁ ⬝ p₂) g ~~*
|
|
|
|
ppi_gen_functor_right f₂ p₂ (ppi_gen_functor_right f₁ p₁ g) :=
|
|
|
|
begin
|
|
|
|
fapply ppi_homotopy.mk,
|
|
|
|
{ reflexivity },
|
|
|
|
{ induction p₁, induction p₂, exact !idp_con ⬝ !ap_compose⁻¹ }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition ppi_gen_functor_right_id [constructor] {A : Type*} {B : A → Type}
|
|
|
|
{b : B pt} (g : ppi_gen B b) : ppi_gen_functor_right (λa, id) idp g ~~* g :=
|
|
|
|
begin
|
|
|
|
fapply ppi_homotopy.mk,
|
|
|
|
{ reflexivity },
|
|
|
|
{ reflexivity }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition ppi_gen_functor_right_homotopy [constructor] {A : Type*} {B B' : A → Type}
|
|
|
|
{b : B pt} {b' : B' pt} {f f' : Πa, B a → B' a} {p : f pt b = b'} {p' : f' pt b = b'}
|
|
|
|
(h : f ~2 f') (q : h pt b ⬝ p' = p) (g : ppi_gen B b) :
|
|
|
|
ppi_gen_functor_right f p g ~~* ppi_gen_functor_right f' p' g :=
|
|
|
|
begin
|
|
|
|
fapply ppi_homotopy.mk,
|
|
|
|
{ exact λa, h a (g a) },
|
|
|
|
{ induction g with g r, induction r, induction q,
|
|
|
|
exact whisker_left _ !idp_con ⬝ !idp_con⁻¹ }
|
|
|
|
end
|
|
|
|
|
|
|
|
definition ppi_gen_equiv_ppi_gen_right [constructor] {A : Type*} {B B' : A → Type}
|
|
|
|
{b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') :
|
|
|
|
ppi_gen B b ≃ ppi_gen B' b' :=
|
|
|
|
equiv.MK (ppi_gen_functor_right f p) (ppi_gen_functor_right (λa, (f a)⁻¹ᵉ) (inv_eq_of_eq p⁻¹))
|
|
|
|
abstract begin
|
|
|
|
intro g, apply ppi_eq,
|
|
|
|
refine !ppi_gen_functor_right_compose⁻¹*' ⬝*' _,
|
|
|
|
refine ppi_gen_functor_right_homotopy (λa, to_right_inv (f a)) _ g ⬝*'
|
|
|
|
!ppi_gen_functor_right_id, induction p, exact adj (f pt) b ⬝ ap02 (f pt) !idp_con⁻¹
|
|
|
|
|
|
|
|
end end
|
|
|
|
abstract begin
|
|
|
|
intro g, apply ppi_eq,
|
|
|
|
refine !ppi_gen_functor_right_compose⁻¹*' ⬝*' _,
|
|
|
|
refine ppi_gen_functor_right_homotopy (λa, to_left_inv (f a)) _ g ⬝*'
|
|
|
|
!ppi_gen_functor_right_id, induction p, exact (!idp_con ⬝ !idp_con)⁻¹,
|
|
|
|
end end
|
|
|
|
|
|
|
|
definition ppi_gen_equiv_ppi_gen_basepoint [constructor] {A : Type*} {B : A → Type} {b b' : B pt}
|
|
|
|
(p : b = b') : ppi_gen B b ≃ ppi_gen B b' :=
|
|
|
|
ppi_gen_equiv_ppi_gen_right (λa, erfl) p
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
open sigma.ops
|
|
|
|
|
2017-07-07 21:32:57 +00:00
|
|
|
definition psigma_gen_pi_pequiv_pupi_psigma_gen [constructor] {A : Type*} {B : A → Type*}
|
2017-06-28 12:14:48 +00:00
|
|
|
(C : Πa, B a → Type) (c : Πa, C a pt) :
|
|
|
|
@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c ≃* Πᵘ*a, psigma_gen (C a) (c a) :=
|
|
|
|
pequiv_of_equiv sigma_pi_equiv_pi_sigma idp
|
|
|
|
|
2017-07-07 21:32:57 +00:00
|
|
|
definition pupi_psigma_gen_pequiv_psigma_gen_pi [constructor] {A : Type*} {B : A → Type*}
|
2017-06-28 12:14:48 +00:00
|
|
|
(C : Πa, B a → Type) (c : Πa, C a pt) :
|
|
|
|
(Πᵘ*a, psigma_gen (C a) (c a)) ≃* @psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c :=
|
|
|
|
pequiv_of_equiv sigma_pi_equiv_pi_sigma⁻¹ᵉ idp
|
|
|
|
|
|
|
|
definition psigma_gen_assoc [constructor] {A : Type*} {B : A → Type} (C : Πa, B a → Type)
|
|
|
|
(b₀ : B pt) (c₀ : C pt b₀) :
|
|
|
|
psigma_gen (λa, Σb, C a b) ⟨b₀, c₀⟩ ≃* @psigma_gen (psigma_gen B b₀) (λv, C v.1 v.2) c₀ :=
|
|
|
|
pequiv_of_equiv !sigma_assoc_equiv idp
|
|
|
|
|
|
|
|
definition psigma_gen_swap [constructor] {A : Type*} {B B' : A → Type}
|
|
|
|
(C : Π⦃a⦄, B a → B' a → Type) (b₀ : B pt) (b₀' : B' pt) (c₀ : C b₀ b₀') :
|
|
|
|
@psigma_gen (psigma_gen B b₀ ) (λv, Σb', C v.2 b') ⟨b₀', c₀⟩ ≃*
|
|
|
|
@psigma_gen (psigma_gen B' b₀') (λv, Σb , C b v.2) ⟨b₀ , c₀⟩ :=
|
|
|
|
!psigma_gen_assoc⁻¹ᵉ* ⬝e* psigma_gen_pequiv_psigma_gen_right (λa, !sigma_comm_equiv) idp ⬝e*
|
|
|
|
!psigma_gen_assoc
|
|
|
|
|
|
|
|
definition ppi_psigma.{u v w} {A : pType.{u}} {B : A → pType.{v}} (C : Πa, B a → Type.{w})
|
|
|
|
(c : Πa, C a pt) : (Π*(a : A), (psigma_gen (C a) (c a))) ≃*
|
2017-06-17 21:21:28 +00:00
|
|
|
psigma_gen (λ(f : Π*(a : A), B a), ppi_gen (λa, C a (f a))
|
2017-06-28 12:14:48 +00:00
|
|
|
(transport (C pt) (ppi.resp_pt f)⁻¹ (c pt))) (ppi_const _) :=
|
|
|
|
proof
|
2017-06-17 21:21:28 +00:00
|
|
|
calc (Π*(a : A), psigma_gen (C a) (c a))
|
2017-06-28 12:14:48 +00:00
|
|
|
≃* @psigma_gen (Πᵘ*a, psigma_gen (C a) (c a)) (λf, f pt = pt) idp : pppi.sigma_char
|
|
|
|
... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c)
|
|
|
|
(λv, Σ(p : v.1 pt = pt), v.2 pt =[p] c pt) ⟨idp, idpo⟩ :
|
2017-07-07 21:32:57 +00:00
|
|
|
by exact psigma_gen_pequiv_psigma_gen (pupi_psigma_gen_pequiv_psigma_gen_pi C c)
|
2017-06-28 12:14:48 +00:00
|
|
|
(λf, sigma_eq_equiv _ _) idpo
|
|
|
|
... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp)
|
|
|
|
(λv, Σ(g : Πa, C a (v.1 a)), g pt =[v.2] c pt) ⟨c, idpo⟩ :
|
|
|
|
by apply psigma_gen_swap
|
2017-06-17 21:21:28 +00:00
|
|
|
... ≃* psigma_gen (λ(f : Π*(a : A), B a), ppi_gen (λa, C a (f a))
|
|
|
|
(transport (C pt) (ppi.resp_pt f)⁻¹ (c pt)))
|
2017-06-28 12:14:48 +00:00
|
|
|
(ppi_const _) :
|
|
|
|
by exact (psigma_gen_pequiv_psigma_gen (pppi.sigma_char B)
|
|
|
|
(λf, !ppi_gen.sigma_char ⬝e sigma_equiv_sigma_right (λg, !pathover_equiv_eq_tr⁻¹ᵉ))
|
|
|
|
idpo)⁻¹ᵉ*
|
|
|
|
qed
|
2017-06-17 21:21:28 +00:00
|
|
|
|
2017-07-02 00:14:18 +00:00
|
|
|
definition ppmap_psigma {A B : Type*} (C : B → Type) (c : C pt) :
|
2017-06-17 21:21:28 +00:00
|
|
|
ppmap A (psigma_gen C c) ≃*
|
|
|
|
psigma_gen (λ(f : ppmap A B), ppi_gen (C ∘ f) (transport C (respect_pt f)⁻¹ c))
|
|
|
|
(ppi_const _) :=
|
2017-06-28 12:14:48 +00:00
|
|
|
!pppi_pequiv_ppmap⁻¹ᵉ* ⬝e* !ppi_psigma ⬝e*
|
|
|
|
sorry
|
|
|
|
-- psigma_gen_pequiv_psigma_gen (pppi_pequiv_ppmap A B) (λf, begin esimp, exact ppi_gen_equiv_ppi_gen_right (λa, _) _ end) _
|
2017-06-17 21:21:28 +00:00
|
|
|
|
|
|
|
definition pfiber_ppcompose_left (f : B →* C) :
|
|
|
|
pfiber (@ppcompose_left A B C f) ≃* ppmap A (pfiber f) :=
|
|
|
|
calc
|
|
|
|
pfiber (@ppcompose_left A B C f) ≃*
|
|
|
|
psigma_gen (λ(g : ppmap A B), f ∘* g = pconst A C)
|
|
|
|
proof (eq_of_phomotopy (pcompose_pconst f)) qed :
|
|
|
|
by exact !pfiber.sigma_char'
|
|
|
|
... ≃* psigma_gen (λ(g : ppmap A B), f ∘* g ~* pconst A C) proof (pcompose_pconst f) qed :
|
|
|
|
by exact psigma_gen_pequiv_psigma_gen_right (λa, !pmap_eq_equiv)
|
|
|
|
!phomotopy_of_eq_of_phomotopy
|
|
|
|
... ≃* psigma_gen (λ(g : ppmap A B), ppi_gen (λa, f (g a) = pt)
|
|
|
|
(transport (λb, f b = pt) (respect_pt g)⁻¹ (respect_pt f)))
|
|
|
|
(ppi_const _) :
|
|
|
|
begin
|
|
|
|
refine psigma_gen_pequiv_psigma_gen_right
|
|
|
|
(λg, ppi_gen_equiv_ppi_gen_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _,
|
|
|
|
intro g, refine !con_idp ⬝ _, apply whisker_right,
|
|
|
|
exact ap02 f !inv_inv⁻¹ ⬝ !ap_inv,
|
|
|
|
apply ppi_eq, fapply ppi_homotopy.mk,
|
|
|
|
intro x, reflexivity,
|
|
|
|
refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv
|
|
|
|
end
|
|
|
|
... ≃* ppmap A (psigma_gen (λb, f b = pt) (respect_pt f)) :
|
2017-07-02 00:14:18 +00:00
|
|
|
by exact (ppmap_psigma _ _)⁻¹ᵉ*
|
2017-06-17 21:21:28 +00:00
|
|
|
... ≃* ppmap A (pfiber f) : by exact pequiv_ppcompose_left !pfiber.sigma_char'⁻¹ᵉ*
|
|
|
|
|
|
|
|
|
2017-07-07 21:32:57 +00:00
|
|
|
definition pfiber_ppi_compose_left {B C : A → Type*} (f : Πa, B a →* C a) :
|
2017-06-17 21:21:28 +00:00
|
|
|
pfiber (ppi_compose_left f) ≃* Π*(a : A), pfiber (f a) :=
|
|
|
|
calc
|
|
|
|
pfiber (ppi_compose_left f) ≃*
|
|
|
|
psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g = ppi_const C)
|
|
|
|
proof (ppi_eq (pmap_compose_ppi_const_right f)) qed : by exact !pfiber.sigma_char'
|
|
|
|
... ≃* psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g ~~* ppi_const C)
|
|
|
|
proof (pmap_compose_ppi_const_right f) qed :
|
|
|
|
by exact psigma_gen_pequiv_psigma_gen_right (λa, !ppi_eq_equiv)
|
|
|
|
!ppi_homotopy_of_eq_of_ppi_homotopy
|
|
|
|
... ≃* psigma_gen (λ(g : Π*(a : A), B a), ppi_gen (λa, f a (g a) = pt)
|
|
|
|
(transport (λb, f pt b = pt) (ppi.resp_pt g)⁻¹ (respect_pt (f pt))))
|
|
|
|
(ppi_const _) :
|
|
|
|
begin
|
|
|
|
refine psigma_gen_pequiv_psigma_gen_right
|
|
|
|
(λg, ppi_gen_equiv_ppi_gen_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _,
|
|
|
|
intro g, refine !con_idp ⬝ _, apply whisker_right,
|
|
|
|
exact ap02 (f pt) !inv_inv⁻¹ ⬝ !ap_inv,
|
|
|
|
apply ppi_eq, fapply ppi_homotopy.mk,
|
|
|
|
intro x, reflexivity,
|
|
|
|
refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv
|
|
|
|
end
|
|
|
|
... ≃* Π*(a : A), (psigma_gen (λb, f a b = pt) (respect_pt (f a))) :
|
|
|
|
by exact (ppi_psigma _ _)⁻¹ᵉ*
|
|
|
|
... ≃* Π*(a : A), pfiber (f a) : by exact ppi_pequiv_right (λa, !pfiber.sigma_char'⁻¹ᵉ*)
|
|
|
|
|
2017-07-02 00:14:18 +00:00
|
|
|
-- definition pppi_ppmap {A C : Type*} {B : A → Type*} :
|
|
|
|
-- ppmap (/- dependent smash of B -/) C ≃* Π*(a : A), ppmap (B a) C :=
|
|
|
|
|
2017-07-08 14:11:11 +00:00
|
|
|
definition ppi_add_point_over {A : Type} (B : A → Type*) :
|
|
|
|
(Π*a, add_point_over B a) ≃ Πa, B a :=
|
|
|
|
begin
|
|
|
|
fapply equiv.MK,
|
|
|
|
{ intro f a, exact f (some a) },
|
|
|
|
{ intro f, fconstructor,
|
|
|
|
intro a, cases a, exact pt, exact f a,
|
|
|
|
reflexivity },
|
|
|
|
{ intro f, reflexivity },
|
|
|
|
{ intro f, cases f with f p, apply ppi_eq, fapply ppi_homotopy.mk,
|
|
|
|
{ intro a, cases a, exact p⁻¹, reflexivity },
|
|
|
|
{ exact con.left_inv p }},
|
|
|
|
end
|
|
|
|
|
|
|
|
definition pppi_add_point_over {A : Type} (B : A → Type*) :
|
|
|
|
(Π*a, add_point_over B a) ≃* Πᵘ*a, B a :=
|
|
|
|
pequiv_of_equiv (ppi_add_point_over B) idp
|
|
|
|
|
|
|
|
definition ppmap_add_point {A : Type} (B : Type*) :
|
|
|
|
ppmap A₊ B ≃* A →ᵘ* B :=
|
|
|
|
pequiv_of_equiv (pmap_equiv_left A B) idp
|
|
|
|
|
2017-07-07 21:32:57 +00:00
|
|
|
-- TODO: homotopy_of_eq and apd10 should be the same
|
|
|
|
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
|
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
definition loop_pppi_pequiv {A : Type*} (B : A → Type*) : Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) :=
|
2017-07-07 21:32:57 +00:00
|
|
|
begin
|
2017-07-08 21:45:18 +00:00
|
|
|
refine loop_pequiv_loop (pppi.sigma_char B) ⬝e* _,
|
|
|
|
refine !loop_psigma_gen ⬝e* _,
|
|
|
|
transitivity @psigma_gen (Πᵘ*a, Ω (B a)) (λf, f pt = idp) idp,
|
|
|
|
exact psigma_gen_pequiv_psigma_gen
|
|
|
|
(loop_pupi B) (λp, eq_pathover_equiv_Fl p idp idp ⬝e
|
|
|
|
equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)) ⬝e !eq_equiv_eq_symm) idpo,
|
|
|
|
exact (pppi.sigma_char (Ω ∘ B))⁻¹ᵉ*
|
2017-07-07 21:32:57 +00:00
|
|
|
end
|
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
definition psquare_loop_ppi_compose_left {A : Type*} {X Y : A → Type*} (f : Π (a : A), X a →* Y a) :
|
|
|
|
psquare
|
|
|
|
(Ω→ (ppi_compose_left f))
|
|
|
|
(ppi_compose_left (λ a, Ω→ (f a)))
|
|
|
|
(loop_pppi_pequiv X)
|
|
|
|
(loop_pppi_pequiv Y)
|
|
|
|
:=
|
2017-07-07 21:32:57 +00:00
|
|
|
begin
|
2017-07-08 21:45:18 +00:00
|
|
|
refine ap1_psquare (pppi_sigma_char_natural f) ⬝v* _,
|
|
|
|
refine !loop_psigma_gen_natural ⬝v* _,
|
|
|
|
refine _ ⬝v* (pppi_sigma_char_natural (λ a, Ω→ (f a)))⁻¹ᵛ*,
|
|
|
|
fapply psigma_gen_functor_psquare,
|
2017-07-07 21:32:57 +00:00
|
|
|
|
2017-07-08 21:45:18 +00:00
|
|
|
repeat exact sorry
|
|
|
|
end /- TODO FOR SSS -/
|
2017-07-07 21:32:57 +00:00
|
|
|
|
2016-11-06 10:01:14 +00:00
|
|
|
end pointed open pointed
|
|
|
|
|
|
|
|
open is_trunc is_conn
|
2017-06-17 21:21:28 +00:00
|
|
|
namespace is_conn
|
2017-07-01 13:26:38 +00:00
|
|
|
section
|
|
|
|
|
2016-11-06 10:01:14 +00:00
|
|
|
variables (A : Type*) (n : ℕ₋₂) [H : is_conn (n.+1) A]
|
|
|
|
include H
|
|
|
|
|
2017-07-05 14:42:27 +00:00
|
|
|
definition is_contr_ppi_match (P : A → Type*) (H : Πa, is_trunc (n.+1) (P a))
|
2016-11-06 10:01:14 +00:00
|
|
|
: is_contr (Π*(a : A), P a) :=
|
|
|
|
begin
|
|
|
|
apply is_contr.mk pt,
|
|
|
|
intro f, induction f with f p,
|
2017-06-17 21:21:28 +00:00
|
|
|
apply ppi_eq, fapply ppi_homotopy.mk,
|
|
|
|
{ apply is_conn.elim n, exact p⁻¹ },
|
|
|
|
{ krewrite (is_conn.elim_β n), apply con.left_inv }
|
2016-11-06 10:01:14 +00:00
|
|
|
end
|
|
|
|
|
2017-07-05 14:42:27 +00:00
|
|
|
-- definition is_trunc_ppi_of_is_conn (k : ℕ₋₂) (P : A → Type*)
|
|
|
|
-- : is_trunc k.+1 (Π*(a : A), P a) :=
|
|
|
|
|
|
|
|
definition is_trunc_ppi_of_is_conn (k l : ℕ₋₂) (H2 : l ≤ n.+1+2+k)
|
|
|
|
(P : A → Type*) (H3 : Πa, is_trunc l (P a)) :
|
|
|
|
is_trunc k.+1 (Π*(a : A), P a) :=
|
2016-11-06 10:01:14 +00:00
|
|
|
begin
|
2017-07-05 14:42:27 +00:00
|
|
|
have H4 : Πa, is_trunc (n.+1+2+k) (P a), from λa, is_trunc_of_le (P a) H2,
|
|
|
|
clear H2 H3, revert P H4,
|
|
|
|
induction k with k IH: intro P H4,
|
2016-11-06 10:01:14 +00:00
|
|
|
{ apply is_prop_of_imp_is_contr, intro f,
|
2017-07-05 14:42:27 +00:00
|
|
|
apply is_contr_ppi_match A n P H4 },
|
2016-11-06 10:01:14 +00:00
|
|
|
{ apply is_trunc_succ_of_is_trunc_loop
|
|
|
|
(trunc_index.succ_le_succ (trunc_index.minus_two_le k)),
|
|
|
|
intro f,
|
2017-07-05 14:42:27 +00:00
|
|
|
apply @is_trunc_equiv_closed_rev _ _ k.+1 (ppi_loop_equiv f),
|
2016-11-06 10:01:14 +00:00
|
|
|
apply IH, intro a,
|
2017-07-05 14:42:27 +00:00
|
|
|
apply is_trunc_loop, apply H4 }
|
2016-11-06 10:01:14 +00:00
|
|
|
end
|
|
|
|
|
2017-07-05 14:42:27 +00:00
|
|
|
|
|
|
|
definition is_trunc_pmap_of_is_conn (k l : ℕ₋₂) (B : Type*) (H2 : l ≤ n.+1+2+k)
|
|
|
|
(H3 : is_trunc l B) : is_trunc k.+1 (A →* B) :=
|
2016-11-06 10:01:14 +00:00
|
|
|
@is_trunc_equiv_closed _ _ k.+1 (ppi_equiv_pmap A B)
|
2017-07-05 14:42:27 +00:00
|
|
|
(is_trunc_ppi_of_is_conn A n k l H2 (λ a, B) _)
|
2017-07-01 13:26:38 +00:00
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
-- this is probably much easier to prove directly
|
2017-07-05 14:42:27 +00:00
|
|
|
definition is_trunc_ppi (A : Type*) (n k : ℕ₋₂) (H : n ≤ k) (P : A → Type*)
|
|
|
|
(H2 : Πa, is_trunc n (P a)) : is_trunc k (Π*(a : A), P a) :=
|
2017-07-01 13:26:38 +00:00
|
|
|
begin
|
|
|
|
cases k with k,
|
2017-07-05 14:42:27 +00:00
|
|
|
{ apply is_contr_of_merely_prop,
|
|
|
|
{ exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) -2 _
|
|
|
|
(trunc_index.le.step H) P H2 },
|
2017-07-01 13:26:38 +00:00
|
|
|
{ exact tr pt } },
|
|
|
|
{ assert K : n ≤ -1 +2+ k,
|
|
|
|
{ rewrite (trunc_index.add_plus_two_comm -1 k), exact H },
|
2017-07-05 14:42:27 +00:00
|
|
|
{ exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) k _ K P H2 } }
|
2017-07-01 13:26:38 +00:00
|
|
|
end
|
2016-11-06 10:01:14 +00:00
|
|
|
|
2017-06-17 21:21:28 +00:00
|
|
|
end is_conn
|