Spectral/homotopy/serre.hlean

221 lines
8.4 KiB
Text
Raw Normal View History

2017-07-04 15:11:21 +00:00
import ..algebra.spectral_sequence .strunc .cohomology
2017-06-29 14:48:43 +00:00
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
cohomology group sigma unit is_conn
set_option pp.binder_types true
2017-06-29 14:48:43 +00:00
/- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/
namespace pointed
2017-06-29 14:48:43 +00:00
definition postnikov_map [constructor] (A : Type*) (n : ℕ₋₂) : ptrunc (n.+1) A →* ptrunc n A :=
ptrunc.elim (n.+1) !ptr
definition ptrunc_functor_postnikov_map {A B : Type*} (n : ℕ₋₂) (f : A →* B) :
ptrunc_functor n f ∘* postnikov_map A n ~* ptrunc.elim (n.+1) (!ptr ∘* f) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, reflexivity },
{ reflexivity }
end
section
open nat group
2017-06-29 14:48:43 +00:00
definition pfiber_postnikov_map (A : Type*) (n : ) :
pfiber (postnikov_map A n) ≃* EM_type A (n+1) :=
begin
symmetry, apply EM_type_pequiv,
{ symmetry, refine _ ⬝g ghomotopy_group_ptrunc (n+1) A,
exact chain_complex.LES_isomorphism_of_trivial_cod _ _
(trivial_homotopy_group_of_is_trunc _ (self_lt_succ n))
(trivial_homotopy_group_of_is_trunc _ (le_succ _)) },
{ apply is_conn_fun_trunc_elim, apply is_conn_fun_tr },
{ have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc,
have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc,
apply is_trunc_pfiber }
end
end
definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) :
psquare (postnikov_map A n) (postnikov_map B n)
(ptrunc_functor (n.+1) f) (ptrunc_functor n f) :=
!ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹*
definition is_equiv_postnikov_map (A : Type*) {n k : ℕ₋₂} [HA : is_trunc k A] (H : k ≤ n) :
is_equiv (postnikov_map A n) :=
begin
apply is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc_of_is_trunc (trunc_index.le.step H) H HA),
intro x, induction x, reflexivity
end
2017-06-29 14:48:43 +00:00
definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') :
trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') :=
by induction p; reflexivity
definition ap1_postnikov_map (A : Type*) (n : ℕ₋₂) :
psquare (Ω→ (postnikov_map A (n.+1))) (postnikov_map (Ω A) n)
(loop_ptrunc_pequiv (n.+1) A) (loop_ptrunc_pequiv n A) :=
have psquare (postnikov_map (Ω A) n) (Ω→ (postnikov_map A (n.+1)))
(loop_ptrunc_pequiv (n.+1) A)⁻¹ᵉ* (loop_ptrunc_pequiv n A)⁻¹ᵉ*,
begin
refine _ ⬝* !ap1_ptrunc_elim⁻¹*, apply pinv_left_phomotopy_of_phomotopy,
fapply phomotopy.mk,
{ intro x, induction x with p, exact !encode_ap1_gen_tr⁻¹ },
{ reflexivity }
end,
this⁻¹ᵛ*
end pointed open pointed
namespace spectrum
definition is_strunc_strunc_pred (X : spectrum) (k : ) : is_strunc k (strunc (k - 1) X) :=
λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc
definition postnikov_smap [constructor] (X : spectrum) (k : ) :
strunc k X →ₛ strunc (k - 1) X :=
strunc_elim (str (k - 1) X) (is_strunc_strunc_pred X k)
/-
we could try to prove that postnikov_smap is homotopic to postnikov_map, although the types
are different enough, that even stating it will be quite annoying
-/
definition pfiber_postnikov_smap (A : spectrum) (n : ) (k : ) :
sfiber (postnikov_smap A n) k ≃* EM_spectrum (πₛ[n] A) k :=
begin
exact sorry
/- symmetry, apply spectrum_pequiv_of_nat_succ_succ, clear k, intro k,
apply EMadd1_pequiv k,
{ exact sorry
-- refine _ ⬝g shomotopy_group_strunc n A,
-- exact chain_complex.LES_isomorphism_of_trivial_cod _ _
-- (trivial_homotopy_group_of_is_trunc _ (self_lt_succ n))
-- (trivial_homotopy_group_of_is_trunc _ (le_succ _))
},
{ exact sorry --apply is_conn_fun_trunc_elim, apply is_conn_fun_tr
},
{ -- have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc,
-- have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc,
-- apply is_trunc_pfiber
exact sorry
}-/
end
section atiyah_hirzebruch
parameters {X : Type*} (Y : X → spectrum) (s₀ : ) (H : Πx, is_strunc s₀ (Y x))
definition atiyah_hirzebruch_exact_couple : exact_couple r Z2 :=
@exact_couple_sequence (λs, strunc s (spi X Y)) (postnikov_smap (spi X Y))
definition atiyah_hirzebruch_ub ⦃s n : ℤ⦄ (Hs : s ≤ n - 1) :
is_contr (πₛ[n] (strunc s (spi X Y))) :=
begin
apply trivial_shomotopy_group_of_is_strunc,
apply is_strunc_strunc,
exact lt_of_le_sub_one Hs
end
include H
definition atiyah_hirzebruch_lb ⦃s n : ℤ⦄ (Hs : s ≥ s₀ + 1) :
is_equiv (postnikov_smap (spi X Y) s n) :=
begin
have H2 : is_strunc s₀ (spi X Y), from is_strunc_spi _ _ H,
refine is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc_of_is_trunc _ _ (H2 n)) _,
{ apply maxm2_monotone, apply add_le_add_right, exact le.trans !le_add_one Hs },
{ apply maxm2_monotone, apply add_le_add_right, exact le_sub_one_of_lt Hs },
refine @trunc.rec _ _ _ _ _,
{ intro x, apply is_trunc_eq,
assert H3 : maxm2 (s - 1 + n) ≤ (maxm2 (s + n)).+1,
{ refine trunc_index.le_succ (maxm2_monotone (le.trans (le_of_eq !add.right_comm)
!sub_one_le)) },
exact @is_trunc_of_le _ _ _ H3 !is_trunc_trunc },
intro a, reflexivity
end
definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple :=
is_bounded_sequence _ s₀ (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
definition atiyah_hirzebruch_convergence' :
(λn s, πₛ[n] (sfiber (postnikov_smap (spi X Y) s))) ⟹ᵍ (λn, πₛ[n] (strunc s₀ (spi X Y))) :=
converges_to_sequence _ s₀ (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
lemma spi_EM_spectrum (k n : ) :
EM_spectrum (πₛ[n] (spi X Y)) k ≃* spi X (λx, EM_spectrum (πₛ[n] (Y x))) k :=
sorry
definition atiyah_hirzebruch_convergence :
(λn s, opH^-n[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^-n[(x : X), Y x]) :=
converges_to_g_isomorphism atiyah_hirzebruch_convergence'
begin
intro n s,
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
refine pfiber_postnikov_smap (spi X Y) s k ⬝e* _,
apply spi_EM_spectrum
end
begin
intro n,
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
apply ptrunc_pequiv, exact is_strunc_spi s₀ Y H k,
end
end atiyah_hirzebruch
2017-07-03 12:37:02 +00:00
section unreduced_atiyah_hirzebruch
definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : )
(H : Πx, is_strunc s₀ (Y x)) :
(λn s, uopH^-n[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) :=
converges_to_g_isomorphism
(@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H))
begin
intro n s, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ,
apply ordinary_parametrized_cohomology_isomorphism_right,
intro x,
apply shomotopy_group_add_point_spectrum
2017-07-03 12:37:02 +00:00
end
begin
intro n, reflexivity
2017-07-03 12:37:02 +00:00
end
end unreduced_atiyah_hirzebruch
section serre
variables {X : Type} (F : X → Type) (Y : spectrum) (s₀ : ) (H : is_strunc s₀ Y)
open option
definition add_point_over {X : Type} (F : X → Type) (x : option X) : Type* :=
(option.cases_on x (lift empty) F)₊
postfix `₊ₒ`:(max+1) := add_point_over
include H
-- definition serre_convergence :
-- (λn s, uopH^-n[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) :=
-- proof
-- converges_to_g_isomorphism
-- (unreduced_atiyah_hirzebruch_convergence
-- (λx, sp_cotensor (F x) Y) s₀
-- (λx, is_strunc_sp_cotensor s₀ (F x) H))
-- begin
-- exact sorry
-- -- intro n s,
-- -- apply ordinary_parametrized_cohomology_isomorphism_right,
-- -- intro x,
-- -- exact (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ,
-- end
-- begin
-- intro n, exact sorry
-- -- refine parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp ⬝g _,
-- -- refine _ ⬝g (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ,
-- -- apply shomotopy_group_isomorphism_of_pequiv, intro k,
-- end
-- qed
end serre
/- TODO: πₛ[n] (strunc 0 (spi X Y)) ≃g H^n[X, λx, Y x] -/
end spectrum