Spectral/homotopy/LES_applications.hlean

18 lines
573 B
Text
Raw Normal View History

import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat
namespace is_conn
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (n k : ) (f : A →* B)
[H : is_conn_map n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
theorem is_equiv_π_of_is_connected {A B : Type*} (n k : ) (f : A →* B)
[H : is_conn_map n f] (H : k ≤ n) : is_equiv (π→[k] f) :=
begin
exact sorry
end
end is_conn