18 lines
573 B
Text
18 lines
573 B
Text
|
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group
|
|||
|
|
|||
|
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat
|
|||
|
|
|||
|
namespace is_conn
|
|||
|
|
|||
|
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (n k : ℕ) (f : A →* B)
|
|||
|
[H : is_conn_map n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
|
|||
|
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
|
|||
|
|
|||
|
theorem is_equiv_π_of_is_connected {A B : Type*} (n k : ℕ) (f : A →* B)
|
|||
|
[H : is_conn_map n f] (H : k ≤ n) : is_equiv (π→[k] f) :=
|
|||
|
begin
|
|||
|
exact sorry
|
|||
|
end
|
|||
|
|
|||
|
end is_conn
|