Spectral/homotopy/wedge.hlean

53 lines
1.7 KiB
Text
Raw Normal View History

-- Authors: Floris van Doorn
import homotopy.wedge
2017-06-08 20:11:02 +00:00
open wedge pushout eq prod sum pointed equiv is_equiv unit lift
namespace wedge
definition wedge_flip [unfold 3] {A B : Type*} (x : A B) : B A :=
begin
induction x,
{ exact inr a },
{ exact inl a },
{ exact (glue ⋆)⁻¹ }
end
-- TODO: fix precedences
definition pwedge_flip [constructor] (A B : Type*) : (A B) →* (B A) :=
pmap.mk wedge_flip (glue ⋆)⁻¹
definition wedge_flip_wedge_flip {A B : Type*} (x : A B) : wedge_flip (wedge_flip x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
exact ap_compose wedge_flip _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
end
definition pwedge_comm [constructor] (A B : Type*) : A B ≃* B A :=
begin
fapply pequiv.MK,
{ exact pwedge_flip A B },
{ exact wedge_flip },
{ exact wedge_flip_wedge_flip },
{ exact wedge_flip_wedge_flip }
end
-- TODO: wedge is associative
2017-06-08 20:11:02 +00:00
definition pwedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A B ≃* A' B' :=
begin
fapply pequiv_of_equiv,
exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b),
exact ap pushout.inl (respect_pt a)
end
definition plift_pwedge.{u v} (A B : Type*) : plift.{u v} (A B) ≃* plift.{u v} A plift.{u v} B :=
calc plift.{u v} (A B) ≃* A B : by exact !pequiv_plift⁻¹ᵉ*
... ≃* plift.{u v} A plift.{u v} B : by exact pwedge_pequiv !pequiv_plift !pequiv_plift
end wedge