Spectral/homotopy/EMRing.hlean

124 lines
5 KiB
Text
Raw Normal View History

-- Authors: Floris van Doorn
2018-09-11 15:06:46 +00:00
import .EM .smash_adjoint ..algebra.ring ..algebra.arrow_group
open algebra eq EM is_equiv equiv is_trunc is_conn pointed trunc susp smash group nat function
namespace EM
definition EM1product_adj {R : Ring} :
EM1 (AbGroup_of_Ring R) →* ppmap (EM1 (AbGroup_of_Ring R)) (EMadd1 (AbGroup_of_Ring R) 1) :=
begin
have is_trunc 1 (ppmap (EM1 (AbGroup_of_Ring R)) (EMadd1 (AbGroup_of_Ring R) 1)),
from is_trunc_pmap_of_is_conn _ _ _ _ _ _ (le.refl 2) !is_trunc_EMadd1,
2018-09-11 15:06:46 +00:00
apply EM1_pmap, fapply inf_homomorphism.mk,
{ intro r, refine pfunext _ _, exact !loop_EM2⁻¹ᵉ* ∘* EM1_functor (ring_right_action r), },
{ intro r r', exact sorry }
end
2018-09-11 15:06:46 +00:00
definition EMproduct_map {A B C : AbGroup} (φ : A → B →g C) (n m : ) (a : A) :
EMadd1 B n →* EMadd1 C n :=
begin
2018-09-11 15:06:46 +00:00
fapply EMadd1_functor (φ a) n
end
2018-09-11 15:06:46 +00:00
definition EM0EMadd1product {A B C : AbGroup} (φ : A →g B →gg C) (n : ) :
A →* EMadd1 B n →** EMadd1 C n :=
EMadd1_pfunctor B C n ∘* pmap_of_homomorphism φ
-- TODO: simplify
2018-09-11 15:06:46 +00:00
definition EMadd1product {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
EMadd1 A n →* EMadd1 B m →** EMadd1 C (m + succ n) :=
begin
2018-09-11 15:06:46 +00:00
assert H1 : is_trunc n.+1 (EMadd1 B m →** EMadd1 C (m + succ n)),
{ refine is_trunc_pmap_of_is_conn _ (m.-1) !is_conn_EMadd1 _ _ _ _ !is_trunc_EMadd1,
exact le_of_eq (trunc_index.of_nat_add_plus_two_of_nat m n)⁻¹ᵖ },
2018-09-11 15:06:46 +00:00
apply EMadd1_pmap,
refine (gloopn_pmap_isomorphism (succ n) _ _)⁻¹ᵍ⁸ ∘∞g
gpmap_loop_homomorphism_right (EMadd1 B m) (loopn_EMadd1_add_of_eq C !succ_add)⁻¹ᵉ* ∘∞g
gloop_pmap_isomorphism _ _ ∘∞g
(deloop_isomorphism _)⁻¹ᵍ⁸ ∘∞g
EM_ehomomorphism B C (succ m) ∘∞g
inf_homomorphism_of_homomorphism φ
end
definition EMproduct1 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
2018-09-11 15:06:46 +00:00
EM A n →* EM B m →** EM C (m + n) :=
begin
cases n with n,
{ cases m with m,
{ exact pmap_of_homomorphism2 φ },
{ exact EM0EMadd1product φ m }},
{ cases m with m,
2018-09-11 15:06:46 +00:00
{ exact ppcompose_left (ptransport (EMadd1 C) (zero_add n)⁻¹) ∘*
pmap_swap_map (EM0EMadd1product (homomorphism_swap φ) n) },
2018-09-11 15:06:46 +00:00
{ exact ppcompose_left (ptransport (EMadd1 C) !succ_add⁻¹) ∘* EMadd1product φ n m }}
end
definition EMproduct2 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
EM A n →* (EM B m →** EM C (m + n)) :=
2018-09-11 15:06:46 +00:00
begin
assert H1 : is_trunc n (gpmap_loop' (EM B m) (loop_EM C (m + n))),
2018-09-11 15:06:46 +00:00
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
apply EM_pmap (gpmap_loop' (EM B m) (loop_EM C (m + n))) n,
2018-09-11 15:06:46 +00:00
exact sorry
-- exact _ /- (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* -/ ∘∞g _ /-ppcompose_left !loopn_EMadd1_add⁻¹ᵉ*-/ ∘∞g
-- _ ∘∞g inf_homomorphism_of_homomorphism φ
end
definition EMproduct3' {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
gEM A n →∞g gpmap_loop' (EM B m) (loop_EM C (m + n)) :=
begin
assert H1 : is_trunc n (gpmap_loop' (EM B m) (loop_EM C (m + n))),
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
-- refine EM_homomorphism _ _ _,
-- --(gmap_loop' (EM B m) (loop_EM C (m + n))) n,
-- exact _ /- (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* -/ ∘∞g _ /-ppcompose_left !loopn_EMadd1_add⁻¹ᵉ*-/ ∘∞g
-- _ ∘∞g inf_homomorphism_of_homomorphism φ
exact sorry
end
definition EMproduct4 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
gEM A n →∞g Ωg (EM B m →** EM C (m + n + 1)) :=
begin
assert H1 : is_trunc (n+1) (EM B m →** EM C (m + n + 1)),
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
apply EM_homomorphism_gloop,
refine (gloopn_pmap_isomorphism _ _ _)⁻¹ᵍ⁸ ∘∞g _ ∘∞g inf_homomorphism_of_homomorphism φ,
-- exact _ /- (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* -/ ∘∞g _ /-ppcompose_left !loopn_EMadd1_add⁻¹ᵉ*-/ ∘∞g
-- _ ∘∞g inf_homomorphism_of_homomorphism φ
exact sorry
end
definition EMproduct5 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
InfGroup_of_deloopable (EM A n) →∞g InfGroup_of_deloopable (EM B m →** EM C (m + n)) :=
begin
assert H1 : is_trunc (n + 1) (deloop (EM B m →** EM C (m + n))),
{ exact is_trunc_pmap_of_is_conn_nat _ m !is_conn_EM _ _ _ !le.refl !is_trunc_EM },
refine EM_homomorphism_deloopable _ _ _ _ _,
-- exact _ /- (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* -/ ∘∞g _ /-ppcompose_left !loopn_EMadd1_add⁻¹ᵉ*-/ ∘∞g
-- _ ∘∞g inf_homomorphism_of_homomorphism φ
exact sorry
end
definition EMadd1product2 {A B C : AbGroup} (φ : A →g B →gg C) (n m : ) :
gEM A (n+1) →∞g Ωg[succ n] (EMadd1 B m →** EMadd1 C m) :=
begin
assert H1 : is_trunc (n+1) (Ω[n] (EMadd1 B m →** EMadd1 C m)),
{ apply is_trunc_loopn, exact sorry },
-- refine EM_homomorphism_gloop (Ω[n] (EMadd1 B m →** EMadd1 C m)) _ _,
/- the underlying pointed map is: -/
-- exact sorry
-- refine (loopn_ppmap_pequiv _ _ _)⁻¹ᵉ* ∘* ppcompose_left !loopn_EMadd1_add⁻¹ᵉ* ∘*
-- EM0EMadd1product φ m
exact sorry
end
2018-09-11 15:06:46 +00:00
end EM