89 lines
2.5 KiB
Text
89 lines
2.5 KiB
Text
|
/-
|
||
|
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
Authors: Jeremy Avigad
|
||
|
-/
|
||
|
import types.trunc
|
||
|
open funext eq trunc is_trunc
|
||
|
|
||
|
definition set (X : Type) := X → Prop
|
||
|
|
||
|
section
|
||
|
open trunc_index
|
||
|
|
||
|
definition propext {p q : Prop} (h : p ↔ q) : p = q :=
|
||
|
tua (equiv_of_iff_of_is_prop h)
|
||
|
|
||
|
end
|
||
|
|
||
|
definition tempty {n : trunc_index} : (n.+1)-Type := trunctype.mk empty _
|
||
|
|
||
|
namespace set
|
||
|
|
||
|
variable {X : Type}
|
||
|
|
||
|
/- membership and subset -/
|
||
|
|
||
|
definition mem (x : X) (a : set X) := a x
|
||
|
infix ∈ := mem
|
||
|
notation a ∉ b := ¬ mem a b
|
||
|
|
||
|
theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
|
||
|
eq_of_homotopy (take x, propext (H x))
|
||
|
|
||
|
definition subset (a b : set X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _
|
||
|
infix ⊆ := subset
|
||
|
|
||
|
definition superset (s t : set X) : Prop := t ⊆ s
|
||
|
infix ⊇ := superset
|
||
|
|
||
|
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
|
||
|
|
||
|
theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
|
||
|
take x, assume ax, subbc (subab ax)
|
||
|
|
||
|
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
||
|
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
|
||
|
|
||
|
-- an alterantive name
|
||
|
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
||
|
subset.antisymm h₁ h₂
|
||
|
|
||
|
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
||
|
assume h₁ h₂, h₁ _ h₂
|
||
|
|
||
|
/- empty set -/
|
||
|
|
||
|
definition empty : set X := λx, tempty
|
||
|
notation `∅` := empty
|
||
|
|
||
|
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
|
||
|
assume H : x ∈ ∅, H
|
||
|
|
||
|
theorem mem_empty_eq (x : X) : x ∈ ∅ = tempty := rfl
|
||
|
|
||
|
/-
|
||
|
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
|
||
|
ext (take x, iff.intro
|
||
|
(assume xs, absurd xs (H x))
|
||
|
(assume xe, absurd xe (not_mem_empty _)))
|
||
|
|
||
|
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
|
||
|
begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end
|
||
|
|
||
|
theorem empty_subset (s : set X) : ∅ ⊆ s :=
|
||
|
take x, assume H, false.elim H
|
||
|
|
||
|
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
|
||
|
subset.antisymm H (empty_subset s)
|
||
|
|
||
|
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
|
||
|
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
|
||
|
|
||
|
lemma bounded_forall_empty_iff {P : X → Prop} :
|
||
|
(∀₀x∈∅, P x) ↔ true :=
|
||
|
iff.intro (take H, true.intro) (take H, by contradiction)
|
||
|
-/
|
||
|
|
||
|
end set
|