74 lines
2.6 KiB
Text
74 lines
2.6 KiB
Text
|
/-
|
||
|
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
Authors: Nathaniel Thomas, Jeremy Avigad
|
||
|
|
||
|
Modules prod vector spaces over a ring.
|
||
|
|
||
|
(We use "left_module," which is more precise, because "module" is a keyword.)
|
||
|
-/
|
||
|
import algebra.field
|
||
|
open algebra
|
||
|
|
||
|
structure has_scalar [class] (F V : Type) :=
|
||
|
(smul : F → V → V)
|
||
|
|
||
|
infixl ` • `:73 := has_scalar.smul
|
||
|
|
||
|
/- modules over a ring -/
|
||
|
|
||
|
structure left_module [class] (R M : Type) [ringR : ring R]
|
||
|
extends has_scalar R M, add_comm_group M :=
|
||
|
(smul_left_distrib : Π (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y)))
|
||
|
(smul_right_distrib : Π (r s : R) (x : M), smul (ring.add r s) x = (add (smul r x) (smul s x)))
|
||
|
(mul_smul : Π r s x, smul (mul r s) x = smul r (smul s x))
|
||
|
(one_smul : Π x, smul one x = x)
|
||
|
|
||
|
section left_module
|
||
|
variables {R M : Type}
|
||
|
variable [ringR : ring R]
|
||
|
variable [moduleRM : left_module R M]
|
||
|
include ringR moduleRM
|
||
|
|
||
|
-- Note: the anonymous include does not work in the propositions below.
|
||
|
|
||
|
proposition smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v :=
|
||
|
!left_module.smul_left_distrib
|
||
|
|
||
|
proposition smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u :=
|
||
|
!left_module.smul_right_distrib
|
||
|
|
||
|
proposition mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) :=
|
||
|
!left_module.mul_smul
|
||
|
|
||
|
proposition one_smul (u : M) : (1 : R) • u = u := !left_module.one_smul
|
||
|
|
||
|
proposition zero_smul (u : M) : (0 : R) • u = 0 :=
|
||
|
have (0 : R) • u + 0 • u = 0 • u + 0, by rewrite [-smul_right_distrib, *add_zero],
|
||
|
!add.left_cancel this
|
||
|
|
||
|
proposition smul_zero (a : R) : a • (0 : M) = 0 :=
|
||
|
have a • (0:M) + a • 0 = a • 0 + 0, by rewrite [-smul_left_distrib, *add_zero],
|
||
|
!add.left_cancel this
|
||
|
|
||
|
proposition neg_smul (a : R) (u : M) : (-a) • u = - (a • u) :=
|
||
|
eq_neg_of_add_eq_zero (by rewrite [-smul_right_distrib, add.left_inv, zero_smul])
|
||
|
|
||
|
proposition neg_one_smul (u : M) : -(1 : R) • u = -u :=
|
||
|
by rewrite [neg_smul, one_smul]
|
||
|
|
||
|
proposition smul_neg (a : R) (u : M) : a • (-u) = -(a • u) :=
|
||
|
by rewrite [-neg_one_smul, -mul_smul, mul_neg_one_eq_neg, neg_smul]
|
||
|
|
||
|
proposition smul_sub_left_distrib (a : R) (u v : M) : a • (u - v) = a • u - a • v :=
|
||
|
by rewrite [sub_eq_add_neg, smul_left_distrib, smul_neg]
|
||
|
|
||
|
proposition sub_smul_right_distrib (a b : R) (v : M) : (a - b) • v = a • v - b • v :=
|
||
|
by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul]
|
||
|
end left_module
|
||
|
|
||
|
/- vector spaces -/
|
||
|
|
||
|
structure vector_space [class] (F V : Type) [fieldF : field F]
|
||
|
extends left_module F V
|