2017-03-23 00:02:53 +00:00
|
|
|
|
import ..pointed
|
|
|
|
|
|
|
|
|
|
open susp eq pointed function is_equiv
|
|
|
|
|
variables {X X' Y Y' Z : Type*}
|
|
|
|
|
|
|
|
|
|
-- move
|
|
|
|
|
definition pap1 [constructor] (X Y : Type*) : ppmap X Y →* ppmap (Ω X) (Ω Y) :=
|
|
|
|
|
pmap.mk ap1 (eq_of_phomotopy !ap1_pconst)
|
|
|
|
|
|
|
|
|
|
definition ap1_gen_const {A B : Type} {a₁ a₂ : A} (b : B) (p : a₁ = a₂) :
|
|
|
|
|
ap1_gen (const A b) idp idp p = idp :=
|
|
|
|
|
ap1_gen_idp_left (const A b) p ⬝ ap_constant p b
|
|
|
|
|
|
|
|
|
|
definition ap1_gen_compose_const_left
|
|
|
|
|
{A B C : Type} (c : C) (f : A → B) {a₁ a₂ : A} (p : a₁ = a₂) :
|
|
|
|
|
ap1_gen_compose (const B c) f idp idp idp idp p ⬝
|
|
|
|
|
ap1_gen_const c (ap1_gen f idp idp p) =
|
|
|
|
|
ap1_gen_const c p :=
|
|
|
|
|
begin induction p, reflexivity end
|
|
|
|
|
|
|
|
|
|
definition ap1_gen_compose_const_right
|
|
|
|
|
{A B C : Type} (g : B → C) (b : B) {a₁ a₂ : A} (p : a₁ = a₂) :
|
|
|
|
|
ap1_gen_compose g (const A b) idp idp idp idp p ⬝
|
|
|
|
|
ap (ap1_gen g idp idp) (ap1_gen_const b p) =
|
|
|
|
|
ap1_gen_const (g b) p :=
|
|
|
|
|
begin induction p, reflexivity end
|
|
|
|
|
|
|
|
|
|
definition ap1_pcompose_pconst_left {A B C : Type*} (f : A →* B) :
|
|
|
|
|
phsquare (ap1_pcompose (pconst B C) f)
|
|
|
|
|
(ap1_pconst A C)
|
|
|
|
|
(ap1_phomotopy (pconst_pcompose f))
|
|
|
|
|
(pwhisker_right (Ω→ f) (ap1_pconst B C) ⬝* pconst_pcompose (Ω→ f)) :=
|
|
|
|
|
begin
|
|
|
|
|
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction f with f f₀,
|
|
|
|
|
esimp at *, induction f₀,
|
|
|
|
|
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
|
|
|
|
|
fapply phomotopy_eq,
|
|
|
|
|
{ exact ap1_gen_compose_const_left c₀ f },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition ap1_pcompose_pconst_right {A B C : Type*} (g : B →* C) :
|
|
|
|
|
phsquare (ap1_pcompose g (pconst A B))
|
|
|
|
|
(ap1_pconst A C)
|
|
|
|
|
(ap1_phomotopy (pcompose_pconst g))
|
|
|
|
|
(pwhisker_left (Ω→ g) (ap1_pconst A B) ⬝* pcompose_pconst (Ω→ g)) :=
|
|
|
|
|
begin
|
|
|
|
|
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction g with g g₀,
|
|
|
|
|
esimp at *, induction g₀,
|
|
|
|
|
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
|
|
|
|
|
fapply phomotopy_eq,
|
|
|
|
|
{ exact ap1_gen_compose_const_right g b₀ },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pap1_natural_left [constructor] (f : X' →* X) :
|
|
|
|
|
psquare (pap1 X Y) (pap1 X' Y) (ppcompose_right f) (ppcompose_right (Ω→ f)) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_mk_ppmap,
|
|
|
|
|
{ intro g, exact !ap1_pcompose⁻¹* },
|
|
|
|
|
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
|
|
|
|
|
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_right_eq_of_phomotopy ◾
|
|
|
|
|
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
|
|
|
|
|
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_left f)⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition pap1_natural_right [constructor] (f : Y →* Y') :
|
|
|
|
|
psquare (pap1 X Y) (pap1 X Y') (ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy_mk_ppmap,
|
|
|
|
|
{ intro g, exact !ap1_pcompose⁻¹* },
|
|
|
|
|
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
|
|
|
|
|
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_left_eq_of_phomotopy ◾
|
|
|
|
|
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
|
|
|
|
|
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_right f)⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
namespace susp
|
|
|
|
|
|
|
|
|
|
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) :
|
|
|
|
|
psusp_functor (pconst X Y) x = pt :=
|
|
|
|
|
begin
|
|
|
|
|
induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact (merid pt)⁻¹ },
|
|
|
|
|
{ apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition susp_functor_pconst [constructor] (X Y : Type*) : psusp_functor (pconst X Y) ~* pconst (psusp X) (psusp Y) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ exact susp_functor_pconst_homotopy },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (psusp X) (psusp Y) :=
|
|
|
|
|
pmap.mk psusp_functor (eq_of_phomotopy !susp_functor_pconst)
|
|
|
|
|
|
|
|
|
|
definition psusp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (psusp X) Y :=
|
|
|
|
|
ppcompose_left (loop_psusp_counit Y) ∘* psusp_pfunctor X (Ω Y)
|
|
|
|
|
|
|
|
|
|
definition loop_psusp_pintro [constructor] (X Y : Type*) : ppmap (psusp X) Y →* ppmap X (Ω Y) :=
|
|
|
|
|
ppcompose_right (loop_psusp_unit X) ∘* pap1 (psusp X) Y
|
|
|
|
|
|
|
|
|
|
definition loop_psusp_pintro_natural_left (f : X' →* X) :
|
|
|
|
|
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X' Y)
|
|
|
|
|
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
|
|
|
|
|
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_psusp_unit_natural f)⁻¹*
|
|
|
|
|
|
|
|
|
|
definition loop_psusp_pintro_natural_right (f : Y →* Y') :
|
|
|
|
|
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X Y')
|
|
|
|
|
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
|
|
|
|
!pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹*
|
|
|
|
|
|
|
|
|
|
definition is_equiv_loop_psusp_pintro [constructor] (X Y : Type*) :
|
|
|
|
|
is_equiv (loop_psusp_pintro X Y) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply adjointify,
|
|
|
|
|
{ exact psusp_pelim X Y },
|
|
|
|
|
{ intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g },
|
|
|
|
|
{ intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) :=
|
|
|
|
|
pequiv_of_pmap (loop_psusp_pintro X Y) (is_equiv_loop_psusp_pintro X Y)
|
|
|
|
|
|
|
|
|
|
definition psusp_adjoint_loop_natural_right (f : Y →* Y') :
|
|
|
|
|
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X Y')
|
|
|
|
|
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
|
|
|
|
loop_psusp_pintro_natural_right f
|
|
|
|
|
|
|
|
|
|
definition psusp_adjoint_loop_natural_left (f : X' →* X) :
|
|
|
|
|
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X' Y)
|
|
|
|
|
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
|
|
|
|
|
loop_psusp_pintro_natural_left f
|
|
|
|
|
|
2017-03-28 16:07:18 +00:00
|
|
|
|
definition iterate_psusp_iterate_psusp_rev (n m : ℕ) (A : Type*) :
|
|
|
|
|
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (m + n) A :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n e,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact psusp_pequiv e }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition iterate_psusp_pequiv [constructor] (n : ℕ) {X Y : Type*} (f : X ≃* Y) :
|
|
|
|
|
iterate_psusp n X ≃* iterate_psusp n Y :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n e,
|
|
|
|
|
{ exact f },
|
|
|
|
|
{ exact psusp_pequiv e }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open algebra nat
|
|
|
|
|
definition iterate_psusp_iterate_psusp (n m : ℕ) (A : Type*) :
|
|
|
|
|
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (n + m) A :=
|
|
|
|
|
iterate_psusp_iterate_psusp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_psusp k A) (add.comm m n))
|
|
|
|
|
|
2017-03-23 00:02:53 +00:00
|
|
|
|
end susp
|