2017-06-02 16:15:31 +00:00
|
|
|
|
import homotopy.susp types.pointed2
|
2017-03-23 00:02:53 +00:00
|
|
|
|
|
2017-06-06 17:54:42 +00:00
|
|
|
|
open susp eq pointed function is_equiv lift equiv
|
2017-03-23 00:02:53 +00:00
|
|
|
|
|
|
|
|
|
namespace susp
|
2017-05-26 21:32:42 +00:00
|
|
|
|
variables {X X' Y Y' Z : Type*}
|
2017-03-23 00:02:53 +00:00
|
|
|
|
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) :
|
|
|
|
|
psusp_functor (pconst X Y) x = pt :=
|
|
|
|
|
begin
|
|
|
|
|
induction x,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact (merid pt)⁻¹ },
|
|
|
|
|
{ apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition susp_functor_pconst [constructor] (X Y : Type*) : psusp_functor (pconst X Y) ~* pconst (psusp X) (psusp Y) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply phomotopy.mk,
|
|
|
|
|
{ exact susp_functor_pconst_homotopy },
|
|
|
|
|
{ reflexivity }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (psusp X) (psusp Y) :=
|
|
|
|
|
pmap.mk psusp_functor (eq_of_phomotopy !susp_functor_pconst)
|
|
|
|
|
|
|
|
|
|
definition psusp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (psusp X) Y :=
|
|
|
|
|
ppcompose_left (loop_psusp_counit Y) ∘* psusp_pfunctor X (Ω Y)
|
|
|
|
|
|
|
|
|
|
definition loop_psusp_pintro [constructor] (X Y : Type*) : ppmap (psusp X) Y →* ppmap X (Ω Y) :=
|
|
|
|
|
ppcompose_right (loop_psusp_unit X) ∘* pap1 (psusp X) Y
|
|
|
|
|
|
|
|
|
|
definition loop_psusp_pintro_natural_left (f : X' →* X) :
|
|
|
|
|
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X' Y)
|
|
|
|
|
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
|
|
|
|
|
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_psusp_unit_natural f)⁻¹*
|
|
|
|
|
|
|
|
|
|
definition loop_psusp_pintro_natural_right (f : Y →* Y') :
|
|
|
|
|
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X Y')
|
|
|
|
|
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
|
|
|
|
!pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹*
|
|
|
|
|
|
|
|
|
|
definition is_equiv_loop_psusp_pintro [constructor] (X Y : Type*) :
|
|
|
|
|
is_equiv (loop_psusp_pintro X Y) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply adjointify,
|
|
|
|
|
{ exact psusp_pelim X Y },
|
|
|
|
|
{ intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g },
|
|
|
|
|
{ intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition psusp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) :=
|
|
|
|
|
pequiv_of_pmap (loop_psusp_pintro X Y) (is_equiv_loop_psusp_pintro X Y)
|
|
|
|
|
|
|
|
|
|
definition psusp_adjoint_loop_natural_right (f : Y →* Y') :
|
|
|
|
|
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X Y')
|
|
|
|
|
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
|
|
|
|
loop_psusp_pintro_natural_right f
|
|
|
|
|
|
|
|
|
|
definition psusp_adjoint_loop_natural_left (f : X' →* X) :
|
|
|
|
|
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X' Y)
|
|
|
|
|
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
|
|
|
|
|
loop_psusp_pintro_natural_left f
|
|
|
|
|
|
2017-03-28 16:07:18 +00:00
|
|
|
|
definition iterate_psusp_iterate_psusp_rev (n m : ℕ) (A : Type*) :
|
|
|
|
|
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (m + n) A :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n e,
|
|
|
|
|
{ reflexivity },
|
|
|
|
|
{ exact psusp_pequiv e }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition iterate_psusp_pequiv [constructor] (n : ℕ) {X Y : Type*} (f : X ≃* Y) :
|
|
|
|
|
iterate_psusp n X ≃* iterate_psusp n Y :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n e,
|
|
|
|
|
{ exact f },
|
|
|
|
|
{ exact psusp_pequiv e }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
open algebra nat
|
|
|
|
|
definition iterate_psusp_iterate_psusp (n m : ℕ) (A : Type*) :
|
|
|
|
|
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (n + m) A :=
|
|
|
|
|
iterate_psusp_iterate_psusp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_psusp k A) (add.comm m n))
|
|
|
|
|
|
2017-06-06 17:54:42 +00:00
|
|
|
|
definition plift_psusp.{u v} : Π(A : Type*), plift.{u v} (psusp A) ≃* psusp (plift.{u v} A) :=
|
|
|
|
|
begin
|
|
|
|
|
intro A,
|
|
|
|
|
calc
|
|
|
|
|
plift.{u v} (psusp A) ≃* psusp A : by exact (pequiv_plift (psusp A))⁻¹ᵉ*
|
|
|
|
|
... ≃* psusp (plift.{u v} A) : by exact psusp_pequiv (pequiv_plift.{u v} A)
|
|
|
|
|
end
|
|
|
|
|
|
2017-03-23 00:02:53 +00:00
|
|
|
|
end susp
|