cleanup, expand explanation
This commit is contained in:
parent
2913de520d
commit
02f5c54b77
1 changed files with 14 additions and 10 deletions
|
@ -9,16 +9,24 @@ open eq pointed is_trunc is_conn is_equiv equiv sphere fiber chain_complex left_
|
|||
namespace cohomology
|
||||
universe variable u
|
||||
/-
|
||||
We have maps:
|
||||
Given a pointed map E →* B with as fiber the sphere S^{n+1} and an abelian group A.
|
||||
The only nontrivial differentials in the spectral sequence of this map are the following
|
||||
differentials on page n:
|
||||
d_m = d_(m-1,n+1)^n : E_(m-1,n+1)^n → E_(m+n+1,0)^n
|
||||
Note that ker d_m = E_(m-1,n+1)^∞ and coker d_m = E_(m+n+1,0)^∞.
|
||||
We have short exact sequences
|
||||
coker d_{m-1} → D_{m+n}^∞ → ker d_m
|
||||
Each diagonal on the ∞-page has at most two nontrivial groups, which means that
|
||||
coker d_{m-1} and ker d_m are the only two nontrivial groups building up D_{m+n}^∞,
|
||||
where D^∞ is the abutment of the spectral sequence.
|
||||
This comes from the spectral sequence, using the fact that coker d_{m-1} and ker d_m are the only
|
||||
two nontrivial groups building up D_{m+n}^∞ (in the filtration of D_{m+n}^∞).
|
||||
This gives the short exact sequences:
|
||||
coker d_{m-1} → D_{m+n}^∞ → ker d_m
|
||||
We can splice these SESs together to get a LES
|
||||
... E_(m+n,0)^n → D_{m+n}^∞ → E_(m-1,n+1)^n → E_(m+n+1,0)^n → D_{m+n+1}^∞ ...
|
||||
Now we have
|
||||
E_(p,q)^n = E_(p,q)^0 = H^p(B; H^q(S^{n+1}; A)) = H^p(B; A) if q = n+1 or q = 0
|
||||
and
|
||||
D_{n}^∞ = H^n(E; A)
|
||||
This gives the Gysin sequence
|
||||
... H^{m+n}(B; A) → H^{m+n}(E; A) → H^{m-1}(B; A) → H^{m+n+1}(B; A) → H^{m+n+1}(E; A) ...
|
||||
-/
|
||||
|
||||
|
||||
|
@ -111,11 +119,6 @@ left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m - 1, n
|
|||
refine ap (λx, x + _) !add.right_inv ⬝ !zero_add }}
|
||||
end
|
||||
|
||||
-- set_option pp.universes true
|
||||
-- print unreduced_ordinary_cohomology_sphere_zero
|
||||
-- print unreduced_ordinary_cohomology_zero
|
||||
-- print ordinary_cohomology_sphere_of_neq
|
||||
-- set_option formatter.hide_full_terms false
|
||||
definition gysin_sequence'_zero {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (m : ℤ) :
|
||||
gysin_sequence' HB f e A (m, 0) ≃lm LeftModule_int_of_AbGroup (uoH^m+n+1[B, A]) :=
|
||||
|
@ -170,6 +173,7 @@ begin
|
|||
{ refine uoH^≃n+1[e⁻¹ᵉ*, A] ⬝g unreduced_ordinary_cohomology_sphere _ _ (succ_ne_zero n) }
|
||||
end
|
||||
|
||||
-- todo: maybe rewrite n+m to m+n (or above rewrite m+n+1 to n+m+1 or n+(m+1))?
|
||||
definition gysin_sequence'_two {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (m : ℤ) :
|
||||
gysin_sequence' HB f e A (m, 2) ≃lm LeftModule_int_of_AbGroup (uoH^n+m[E, A]) :=
|
||||
|
|
Loading…
Reference in a new issue