diff --git a/homotopy/EM.hlean b/homotopy/EM.hlean index 87953ba..7080a30 100644 --- a/homotopy/EM.hlean +++ b/homotopy/EM.hlean @@ -97,7 +97,7 @@ namespace EM definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ℕ) : K G n ≃* K H n := begin - fapply pequiv.MK, + fapply pequiv.MK', { exact EM_functor φ n }, { exact EM_functor φ⁻¹ᵍ n }, { intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _, diff --git a/homotopy/smash.hlean b/homotopy/smash.hlean index 1f0723e..f2b3b4a 100644 --- a/homotopy/smash.hlean +++ b/homotopy/smash.hlean @@ -905,7 +905,7 @@ namespace smash definition smash_comm [constructor] : smash A B ≃* smash B A := begin - apply pequiv.MK2, do 2 apply smash_flip_smash_flip + apply pequiv.MK, do 2 apply smash_flip_smash_flip end variables {A B} diff --git a/homotopy/smash_adjoint.hlean b/homotopy/smash_adjoint.hlean index 8d23779..4c6a01c 100644 --- a/homotopy/smash_adjoint.hlean +++ b/homotopy/smash_adjoint.hlean @@ -404,7 +404,7 @@ namespace smash definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') : psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C) (ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) := - (smash_pelim_natural_lm C g f)⁻¹ʰ* + proof (!smash_pelim_natural_lm)⁻¹ʰ* qed /- Corollary: associativity of smash -/ @@ -460,7 +460,7 @@ namespace smash refine !smash_functor_pid_pcompose⁻¹* ⬝* _, apply smash_functor_phomotopy phomotopy.rfl, refine !passoc⁻¹* ⬝* _, - refine pwhisker_right _ !smash_adjoint_pmap_natural_right ⬝* _, + refine pwhisker_right _ (smash_adjoint_pmap_natural_right f) ⬝* _, refine !passoc ⬝* _, apply pwhisker_left, apply smash_elim_inv_natural_right @@ -468,7 +468,7 @@ namespace smash definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C := begin - fapply pequiv.MK2, + fapply pequiv.MK, { exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid }, { exact !smash_assoc_elim_equiv !pid }, { refine !smash_assoc_elim_inv_natural_right_pt ⬝* _, @@ -538,7 +538,7 @@ namespace smash definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) := begin - fapply pequiv.MK2, + fapply pequiv.MK, { exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid }, { exact !smash_psusp_elim_equiv !pid }, { refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _, diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index af6b485..4df2fbd 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -189,8 +189,7 @@ namespace spectrum (pwhisker_left (glue F n) (to_phomotopy n)) (pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n)))) (glue_square f n) - (glue_square g n) - ) + (glue_square g n)) infix ` ~ₛ `:50 := shomotopy @@ -344,7 +343,7 @@ namespace spectrum end definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) - : f ∘ₛ spoint f ~ₛ szero (sfiber f) Y := + : f ∘ₛ spoint f ~ₛ !szero := begin fapply shomotopy.mk, { intro n, exact pcompose_ppoint (f n) }, @@ -479,9 +478,7 @@ namespace spectrum definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) := begin - refine _ ⬝* !ap1_pcompose⁻¹*, - apply !pwhisker_right, - refine !to_pinv_pequiv_MK2 + refine !ap1_pcompose⁻¹* end definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) : @@ -517,7 +514,7 @@ namespace spectrum (equiv_gluen X n (k+1))⁻¹ᵉ* ~* (equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in := begin - refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv + refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv end definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X := @@ -550,11 +547,8 @@ namespace spectrum refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _, refine pwhisker_right _ !apn_pinv ⬝* _, refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*, - refine pwhisker_right _ !pmap_eta⁻¹* ⬝* _, refine apn_psquare k _, - refine pwhisker_right _ _ ⬝* psquare_of_phomotopy !smap.glue_square, - exact !pmap_eta⁻¹* - } + refine psquare_of_phomotopy !smap.glue_square } end definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} diff --git a/homotopy/wedge.hlean b/homotopy/wedge.hlean index f3f82fe..10ab20e 100644 --- a/homotopy/wedge.hlean +++ b/homotopy/wedge.hlean @@ -29,7 +29,7 @@ namespace wedge definition pwedge_comm [constructor] (A B : Type*) : A ∨ B ≃* B ∨ A := begin - fapply pequiv.MK, + fapply pequiv.MK', { exact pwedge_flip A B }, { exact wedge_flip }, { exact wedge_flip_wedge_flip }, diff --git a/move_to_lib.hlean b/move_to_lib.hlean index 2192a53..5e0fe4b 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -309,7 +309,7 @@ namespace misc definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin - fapply pequiv.MK, + fapply pequiv.MK', { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩,