Add fwedge_down_left.
This commit is contained in:
parent
2e55a4a4ef
commit
0acc5c786d
1 changed files with 38 additions and 3 deletions
|
@ -7,7 +7,7 @@ The Wedge Sum of a family of Pointed Types
|
|||
-/
|
||||
import homotopy.wedge ..move_to_lib ..choice
|
||||
|
||||
open eq pushout pointed unit trunc_index sigma bool equiv trunc choice unit is_trunc sigma.ops lift
|
||||
open eq is_equiv pushout pointed unit trunc_index sigma bool equiv trunc choice unit is_trunc sigma.ops lift function
|
||||
|
||||
definition fwedge' {I : Type} (F : I → Type*) : Type := pushout (λi, ⟨i, Point (F i)⟩) (λi, ⋆)
|
||||
definition pt' [constructor] {I : Type} {F : I → Type*} : fwedge' F := inr ⋆
|
||||
|
@ -123,6 +123,15 @@ namespace fwedge
|
|||
{ exact con.left_inv (respect_pt g) }
|
||||
end
|
||||
|
||||
definition fwedge_pmap_pinl [constructor] {I : Type} {F : I → Type*} : fwedge_pmap (λi, pinl i) ~* pid (⋁ F) :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ intro x, induction x,
|
||||
reflexivity, reflexivity,
|
||||
apply eq_pathover, apply hdeg_square, refine !elim_glue ⬝ !ap_id⁻¹ },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition fwedge_pmap_equiv [constructor] {I : Type} (F : I → Type*) (X : Type*) :
|
||||
⋁F →* X ≃ Πi, F i →* X :=
|
||||
begin
|
||||
|
@ -203,8 +212,34 @@ namespace fwedge
|
|||
}
|
||||
end
|
||||
|
||||
definition plift_fwedge.{u v} {I : Type} {F : I → pType.{u}} : plift.{u v} (⋁ F) ≃* ⋁ (λ i, plift.{u v} (F i)) :=
|
||||
definition plift_fwedge.{u v} {I : Type} (F : I → pType.{u}) : plift.{u v} (⋁ F) ≃* ⋁ (plift.{u v} ∘ F) :=
|
||||
calc plift.{u v} (⋁ F) ≃* ⋁ F : by exact !pequiv_plift ⁻¹ᵉ*
|
||||
... ≃* ⋁ (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
|
||||
... ≃* ⋁ (λ i, plift.{u v} (F i)) : by exact fwedge_pequiv (λ i, !pequiv_plift)
|
||||
|
||||
definition fwedge_down_left.{u v} {I : Type} (F : I → pType) : ⋁ (F ∘ down.{u v}) ≃* ⋁ F :=
|
||||
let pto := @fwedge_pmap (lift.{u v} I) (F ∘ down) (⋁ F) (λ i, pinl (down i)) in
|
||||
let pfrom := @fwedge_pmap I F (⋁ (F ∘ down.{u v})) (λ i, pinl (up.{u v} i)) in
|
||||
begin
|
||||
fapply pequiv_of_pmap,
|
||||
{ exact pto },
|
||||
fapply adjointify,
|
||||
{ exact pfrom },
|
||||
{ intro x, exact calc pto (pfrom x) = fwedge_pmap (λ i, (pto ∘* pfrom) ∘* pinl i) x : by exact (fwedge_pmap_eta (pto ∘* pfrom) x)⁻¹
|
||||
... = fwedge_pmap (λ i, pto ∘* (pfrom ∘* pinl i)) x : by exact fwedge_pmap_phomotopy (λ i, passoc pto pfrom (pinl i)) x
|
||||
... = fwedge_pmap (λ i, pto ∘* pinl (up.{u v} i)) x : by exact fwedge_pmap_phomotopy (λ i, pwhisker_left pto (fwedge_pmap_beta (λ i, pinl (up.{u v} i)) i)) x
|
||||
... = fwedge_pmap pinl x : by exact fwedge_pmap_phomotopy (λ i, fwedge_pmap_beta (λ i, (pinl (down.{u v} i))) (up.{u v} i)) x
|
||||
... = x : by exact fwedge_pmap_pinl x
|
||||
},
|
||||
{ intro x, exact calc pfrom (pto x) = fwedge_pmap (λ i, (pfrom ∘* pto) ∘* pinl i) x : by exact (fwedge_pmap_eta (pfrom ∘* pto) x)⁻¹
|
||||
... = fwedge_pmap (λ i, pfrom ∘* (pto ∘* pinl i)) x : by exact fwedge_pmap_phomotopy (λ i, passoc pfrom pto (pinl i)) x
|
||||
... = fwedge_pmap (λ i, pfrom ∘* pinl (down.{u v} i)) x : by exact fwedge_pmap_phomotopy (λ i, pwhisker_left pfrom (fwedge_pmap_beta (λ i, pinl (down.{u v} i)) i)) x
|
||||
... = fwedge_pmap pinl x : by exact fwedge_pmap_phomotopy (λ i,
|
||||
begin induction i with i,
|
||||
exact fwedge_pmap_beta (λ i, (pinl (up.{u v} i))) i
|
||||
end
|
||||
) x
|
||||
... = x : by exact fwedge_pmap_pinl x
|
||||
}
|
||||
end
|
||||
|
||||
end fwedge
|
||||
|
|
Loading…
Reference in a new issue