feat(homotopy/spectrum): use namespaces and better typeclasses
This commit is contained in:
parent
2bb5176b97
commit
104378f2c3
1 changed files with 154 additions and 166 deletions
|
@ -5,218 +5,206 @@ Authors: Michael Shulman
|
|||
|
||||
-/
|
||||
|
||||
import init.equiv types.nat types.pointed types.int types.pointed2 homotopy.susp types.fiber algebra.homotopy_group types.trunc
|
||||
open eq pointed nat pmap susp phomotopy sigma is_equiv equiv homotopy fiber int algebra trunc trunc_index
|
||||
import types.int types.pointed2 types.trunc homotopy.susp algebra.homotopy_group
|
||||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index
|
||||
|
||||
/-----------------------------------------
|
||||
Stuff that should go in other files
|
||||
-----------------------------------------/
|
||||
|
||||
namespace sigma
|
||||
|
||||
definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') :=
|
||||
sigma_equiv_sigma Hf (λa, erfl)
|
||||
|
||||
end sigma
|
||||
open sigma
|
||||
|
||||
namespace pointed
|
||||
|
||||
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
|
||||
pequiv_of_pmap (g ∘* f) (is_equiv_compose f g)
|
||||
|
||||
infixr ` ∘*ᵉ `:60 := pequiv_compose
|
||||
|
||||
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
|
||||
begin
|
||||
fapply equiv.MK : intros f,
|
||||
{ exact ⟨to_fun f , resp_pt f⟩ },
|
||||
all_goals cases f with f p,
|
||||
{ exact pmap.mk f p },
|
||||
all_goals reflexivity
|
||||
end
|
||||
|
||||
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f :=
|
||||
begin
|
||||
fapply equiv.MK : intros h,
|
||||
{ exact ⟨h , to_homotopy_pt h⟩ },
|
||||
all_goals cases h with h p,
|
||||
{ exact phomotopy.mk h p },
|
||||
all_goals reflexivity
|
||||
end
|
||||
|
||||
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||||
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
|
||||
: eq_equiv_fn_eq pmap.sigma_char f g
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g)
|
||||
: sigma_eq_equiv _ _
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g))
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_ap10 p _) _))
|
||||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f
|
||||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||||
... ≃ (f ~* g) : phomotopy.sigma_char f g
|
||||
|
||||
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||||
pequiv_of_equiv
|
||||
(calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl
|
||||
... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
|
||||
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
|
||||
... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl
|
||||
... -/ ≃ (A →* Ω B) : pmap.sigma_char)
|
||||
(by reflexivity)
|
||||
|
||||
definition ppcompose_left {A B C : Type*} (g : B →* C) : ppmap A B →* ppmap A C :=
|
||||
pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹))
|
||||
|
||||
definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) :=
|
||||
begin
|
||||
fapply is_equiv.adjointify,
|
||||
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
|
||||
all_goals (intros f; esimp; apply eq_of_phomotopy),
|
||||
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
|
||||
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
|
||||
... ~* f : pid_comp f },
|
||||
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
|
||||
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
|
||||
... ~* f : pid_comp f }
|
||||
end
|
||||
|
||||
definition equiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
|
||||
pequiv_of_pmap (ppcompose_left g) _
|
||||
|
||||
end pointed
|
||||
open pointed
|
||||
|
||||
/---------------------
|
||||
Basic definitions
|
||||
---------------------/
|
||||
|
||||
/- I gather from looking at other files that I should be using
|
||||
namespaces somehow here, but I don't really understand the conventions
|
||||
for how to use them. -/
|
||||
|
||||
structure prespectrum :=
|
||||
(deloop : ℕ → Type*)
|
||||
(glue : Πn, (deloop n) →* (Ω (deloop (succ n))))
|
||||
|
||||
open prespectrum
|
||||
attribute prespectrum.deloop [coercion]
|
||||
|
||||
structure is_spectrum [class] (E : prespectrum) :=
|
||||
(is_equiv_glue : Πn, is_equiv (glue E n))
|
||||
(is_equiv_glue : Πn, is_equiv (prespectrum.glue E n))
|
||||
|
||||
open is_spectrum
|
||||
|
||||
attribute is_equiv_glue [instance]
|
||||
attribute is_spectrum.is_equiv_glue [instance]
|
||||
|
||||
definition equiv_glue (E : prespectrum) [H : is_spectrum E] (n:ℕ) : (E n) ≃* (Ω (E (succ n))) :=
|
||||
pequiv_of_pmap (glue E n) (is_equiv_glue E n)
|
||||
pequiv_of_pmap (prespectrum.glue E n) _
|
||||
|
||||
structure spectrum :=
|
||||
(to_prespectrum : prespectrum)
|
||||
(to_is_spectrum : is_spectrum to_prespectrum)
|
||||
|
||||
open spectrum
|
||||
|
||||
attribute spectrum.to_prespectrum [coercion]
|
||||
attribute spectrum.to_is_spectrum [instance]
|
||||
|
||||
/- Spectrum maps -/
|
||||
structure smap (E F : prespectrum) :=
|
||||
(to_fun : Πn, E n →* F n)
|
||||
(glue_square : Πn, glue F n ∘* to_fun n ~* Ω→ (to_fun (succ n)) ∘* glue E n)
|
||||
namespace spectrum
|
||||
|
||||
open smap
|
||||
infix ` →ₛ `:30 := smap
|
||||
abbreviation glue := prespectrum.glue
|
||||
|
||||
attribute smap.to_fun [coercion]
|
||||
-- An easy way to define a spectrum.
|
||||
definition MK (deloop : ℕ → Type*) (glue : Πn, (deloop n) ≃* (Ω (deloop (succ n)))) : spectrum :=
|
||||
spectrum.mk (prespectrum.mk deloop (λn, glue n)) (is_spectrum.mk (λn, _))
|
||||
|
||||
definition scompose {X Y Z : prespectrum} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
|
||||
smap.mk (λn, g n ∘* f n)
|
||||
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
|
||||
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
|
||||
... ~* (Ω→(to_fun g (succ n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
|
||||
... ~* Ω→(to_fun g (succ n)) ∘* (glue Y n ∘* to_fun f n) : passoc
|
||||
... ~* Ω→(to_fun g (succ n)) ∘* (Ω→ (f (succ n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (succ n)) (glue_square f n)
|
||||
... ~* (Ω→(to_fun g (succ n)) ∘* Ω→(f (succ n))) ∘* glue X n : passoc
|
||||
... ~* Ω→(to_fun g (succ n) ∘* to_fun f (succ n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
|
||||
/- Spectrum maps -/
|
||||
structure smap (E F : prespectrum) :=
|
||||
(to_fun : Πn, E n →* F n)
|
||||
(glue_square : Πn, glue F n ∘* to_fun n ~* Ω→ (to_fun (succ n)) ∘* glue E n)
|
||||
|
||||
infixr ` ∘ₛ `:60 := scompose
|
||||
open smap
|
||||
infix ` →ₛ `:30 := smap
|
||||
|
||||
/- Suspension prespectra -/
|
||||
attribute smap.to_fun [coercion]
|
||||
|
||||
definition psp_suspn : ℕ → Type* → Type*
|
||||
| psp_suspn 0 X := X
|
||||
| psp_suspn (succ n) X := psusp (psp_suspn n X)
|
||||
definition scompose {X Y Z : prespectrum} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
|
||||
smap.mk (λn, g n ∘* f n)
|
||||
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
|
||||
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
|
||||
... ~* (Ω→(to_fun g (succ n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
|
||||
... ~* Ω→(to_fun g (succ n)) ∘* (glue Y n ∘* to_fun f n) : passoc
|
||||
... ~* Ω→(to_fun g (succ n)) ∘* (Ω→ (f (succ n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (succ n)) (glue_square f n)
|
||||
... ~* (Ω→(to_fun g (succ n)) ∘* Ω→(f (succ n))) ∘* glue X n : passoc
|
||||
... ~* Ω→(to_fun g (succ n) ∘* to_fun f (succ n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
|
||||
|
||||
definition psp_susp_oo (X : Type*) :=
|
||||
prespectrum.mk (λn, psp_suspn n X) (λn, loop_susp_unit (psp_suspn n X))
|
||||
infixr ` ∘ₛ `:60 := scompose
|
||||
|
||||
/- Truncations -/
|
||||
/- Suspension prespectra -/
|
||||
|
||||
definition inc (n : ℕ) (k : ℕ₋₂) : ℕ₋₂ :=
|
||||
nat.rec_on n k (λa, λm, succ m)
|
||||
definition psp_suspn : ℕ → Type* → Type*
|
||||
| psp_suspn 0 X := X
|
||||
| psp_suspn (succ n) X := psusp (psp_suspn n X)
|
||||
|
||||
definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum :=
|
||||
spectrum.mk (prespectrum.mk (λn, ptrunc (inc n k) (E n))
|
||||
(λn, (loop_ptrunc_pequiv (inc n k) (E (succ n)))⁻¹ᵉ* ∘* (ptrunc_pequiv_ptrunc (inc n k) (equiv_glue E n))))
|
||||
-- typeclass inference is failing me
|
||||
(is_spectrum.mk (λn, @is_equiv_compose _ _ _ _ (loop_ptrunc_pequiv (inc n k) (E (succ n)))⁻¹ᵉ* _ (pequiv.to_is_equiv _)))
|
||||
definition psp_susp_oo (X : Type*) :=
|
||||
prespectrum.mk (λn, psp_suspn n X) (λn, loop_susp_unit (psp_suspn n X))
|
||||
|
||||
/---------------------
|
||||
Homotopy groups
|
||||
---------------------/
|
||||
/- Truncations -/
|
||||
|
||||
/- A spectrum has homotopy groups indexed by all integers. The naive
|
||||
definition would be
|
||||
definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum :=
|
||||
spectrum.MK (λ(n:ℕ), ptrunc (k + n) (E n))
|
||||
(λ(n:ℕ), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ* ∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E n)))
|
||||
|
||||
match n with
|
||||
| neg_succ_of_nat k := π[0] (E (1+k))
|
||||
| of_nat k := π[k] (E 0)
|
||||
end
|
||||
/---------------------
|
||||
Homotopy groups
|
||||
---------------------/
|
||||
|
||||
but in order to ensure easily that they are all abelian groups, we
|
||||
start shifting out earlier. Since homotopy groups commute
|
||||
appropriately with loop spaces, this is equivalent.
|
||||
-/
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup :=
|
||||
match n with
|
||||
| neg_succ_of_nat k := πag[0+2] (E (3 + k))
|
||||
| of_nat 0 := πag[0+2] (E 2)
|
||||
| of_nat 1 := πag[0+2] (E 1)
|
||||
| of_nat (succ (succ k)) := πag[k+2] (E 0)
|
||||
end
|
||||
/- A spectrum has homotopy groups indexed by all integers. The naive
|
||||
definition would be
|
||||
|
||||
notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E
|
||||
match n with
|
||||
| neg_succ_of_nat k := π[0] (E (1+k))
|
||||
| of_nat k := π[k] (E 0)
|
||||
end
|
||||
|
||||
/---------------------
|
||||
More pointed stuff
|
||||
---------------------/
|
||||
but in order to ensure easily that they are all abelian groups, we
|
||||
start shifting out earlier. Since homotopy groups commute
|
||||
appropriately with loop spaces, this is equivalent.
|
||||
-/
|
||||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup :=
|
||||
match n with
|
||||
| neg_succ_of_nat k := πag[0+2] (E (3 + k))
|
||||
| of_nat 0 := πag[0+2] (E 2)
|
||||
| of_nat 1 := πag[0+2] (E 1)
|
||||
| of_nat (succ (succ k)) := πag[k+2] (E 0)
|
||||
end
|
||||
|
||||
/- Most of this stuff should really be in one of the "pointed" files. -/
|
||||
notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E
|
||||
|
||||
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
|
||||
begin
|
||||
fapply equiv.mk,
|
||||
{ intros f, exact ⟨to_fun f , resp_pt f⟩ },
|
||||
fapply is_equiv.adjointify,
|
||||
{ intros f, cases f with f p, exact pmap.mk f p },
|
||||
{ intros f, cases f with f p, esimp },
|
||||
{ intros f, cases f with f p, esimp }
|
||||
end
|
||||
/-------------------------------
|
||||
Cotensor of spectra by types
|
||||
-------------------------------/
|
||||
|
||||
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f :=
|
||||
begin
|
||||
fapply equiv.mk,
|
||||
{ intros h, exact ⟨homotopy h , homotopy_pt h⟩ },
|
||||
fapply is_equiv.adjointify,
|
||||
{ intros h, cases h with h p, exact phomotopy.mk h p },
|
||||
{ intros h, cases h with h p, esimp },
|
||||
{ intros h, cases h with h p, esimp }
|
||||
end
|
||||
definition sp_cotensor (A : Type*) (B : spectrum) : spectrum :=
|
||||
spectrum.MK (λn, ppmap A (B n))
|
||||
(λn, (loop_pmap_commute A (B (succ n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
|
||||
|
||||
-- I couldn't find the bundled version of is_equiv_ap anywhere. What should it be named? Apparently equiv.equiv_ap is something different?
|
||||
definition my_equiv_ap {A B : Type} (f : A → B) [H : is_equiv f] (x y : A) : (x = y) ≃ (f x = f y) :=
|
||||
equiv.mk (ap f) _
|
||||
/- Mapping spectra -/
|
||||
|
||||
-- should be in types.sigma
|
||||
definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') :=
|
||||
sigma_equiv_sigma Hf (λa, erfl)
|
||||
/- Fibers and long exact sequences -/
|
||||
|
||||
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||||
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
|
||||
: my_equiv_ap pmap.sigma_char f g
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g)
|
||||
: sigma_eq_equiv _ _
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g))
|
||||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_ap10 p _) _))
|
||||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f
|
||||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||||
... ≃ (f ~* g) : phomotopy.sigma_char f g
|
||||
/- Spectrification -/
|
||||
|
||||
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||||
pequiv_of_equiv
|
||||
(calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl
|
||||
... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
|
||||
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
|
||||
... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl
|
||||
... -/ ≃ (A →* Ω B) : pmap.sigma_char)
|
||||
(by esimp)
|
||||
/- Tensor by spaces -/
|
||||
|
||||
definition ppcompose_left {A B C : Type*} (g : B →* C) : ((ppmap A B) →* (ppmap A C)) :=
|
||||
pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹))
|
||||
/- Smash product of spectra -/
|
||||
|
||||
definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) :=
|
||||
begin
|
||||
fapply is_equiv.adjointify,
|
||||
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
|
||||
{ intros f, esimp, apply eq_of_phomotopy,
|
||||
exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc _ _ _
|
||||
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
|
||||
... ~* f : pid_comp f },
|
||||
{ intros f, esimp, apply eq_of_phomotopy,
|
||||
exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc _ _ _
|
||||
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
|
||||
... ~* f : pid_comp f }
|
||||
end
|
||||
/- Cofibers and stability -/
|
||||
|
||||
definition is_equiv_pcompose [instance] {A B C : Type*} (g : B →* C) (f : A →* B) [Hg : is_equiv g] [Hf : is_equiv f] : is_equiv (g ∘* f) :=
|
||||
(is_equiv_compose f g)
|
||||
|
||||
/-------------------------------
|
||||
Cotensor of spectra by types
|
||||
-------------------------------/
|
||||
|
||||
definition psp_cotensor (A : Type*) (B : prespectrum) : prespectrum :=
|
||||
prespectrum.mk (λn, ppmap A (B n))
|
||||
(λn, (pequiv.to_pmap (loop_pmap_commute A (B (succ n)))⁻¹ᵉ*) ∘*
|
||||
(ppcompose_left (glue B n)))
|
||||
|
||||
definition is_spectrum_cotensor [instance] (A : Type*) (B : prespectrum) [H : is_spectrum B] : is_spectrum (psp_cotensor A B) :=
|
||||
begin
|
||||
apply is_spectrum.mk, intros n, unfold psp_cotensor, esimp,
|
||||
-- typeclass inference is failing me...
|
||||
refine (@is_equiv_compose _ _ _ _ ((pequiv.to_fun (loop_pmap_commute A (B (succ n)))⁻¹ᵉ*)) _ _),
|
||||
apply is_equiv_ppcompose_left,
|
||||
apply pequiv.to_is_equiv
|
||||
end
|
||||
|
||||
definition sp_cotensor (A : Type*) (B : spectrum) : spectrum :=
|
||||
spectrum.mk (psp_cotensor A B) _
|
||||
|
||||
/- Mapping spectra -/
|
||||
|
||||
/- Fibers and long exact sequences -/
|
||||
|
||||
/- Spectrification -/
|
||||
|
||||
/- Tensor by spaces -/
|
||||
|
||||
/- Smash product of spectra -/
|
||||
|
||||
/- Cofibers and stability -/
|
||||
end spectrum
|
||||
|
|
Loading…
Reference in a new issue