definition of j prime completed

This commit is contained in:
Egbert Rijke 2017-06-16 15:41:01 -04:00
parent a2c4e0858d
commit 17a5218b62

View file

@ -178,15 +178,39 @@ definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d :=
open eq
definition left_square_derived_ses_aux : j_factor ∘g ab_image_incl k ~ (SES.f (SES_of_differential d H)) ∘g (image_homomorphism k j) :=
begin
intro x,
induction x with a p, induction p with f, induction f with b p, induction p,
fapply subtype_eq,
reflexivity,
end
definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im :=
begin
intro x,
fapply subtype_eq,
refine sorry
-- fapply ab_hom_factors_through_lift _ _ ,
--(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _,
intro x,
exact (ap j_factor (subgroup_iso_exact_at_A_triangle x)) ⬝ (left_square_derived_ses_aux (subgroup_iso_exact_at_A x)),
end
print quotient_extend_unique_SES
check quotient_extend_unique_SES (SES_of_exact_couple_at_i) (SES_of_differential d H) (subgroup_homom_ker_to_im) (j_factor) (left_square_derived_ses)
definition derived_couple_j_unique :
is_contr (Σ hC, group_fun (hC ∘g SES.g SES_of_exact_couple_at_i) ~ group_fun
(SES.g (SES_of_differential d H) ∘g j_factor)) :=
quotient_extend_unique_SES (SES_of_exact_couple_at_i) (SES_of_differential d H) (subgroup_homom_ker_to_im) (j_factor) (left_square_derived_ses)
definition derived_couple_j : derived_couple_A →g derived_couple_B :=
begin
exact pr1 (center' (derived_couple_j_unique)),
end
definition derived_couple_j_htpy : group_fun (derived_couple_j ∘g SES.g SES_of_exact_couple_at_i) ~ group_fun
(SES.g (SES_of_differential d H) ∘g j_factor) :=
begin
exact pr2 (center' (derived_couple_j_unique)),
end
/-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
begin
exact sorry,