definition of j prime completed
This commit is contained in:
parent
a2c4e0858d
commit
17a5218b62
1 changed files with 29 additions and 5 deletions
|
@ -178,15 +178,39 @@ definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d :=
|
|||
|
||||
open eq
|
||||
|
||||
definition left_square_derived_ses_aux : j_factor ∘g ab_image_incl k ~ (SES.f (SES_of_differential d H)) ∘g (image_homomorphism k j) :=
|
||||
begin
|
||||
intro x,
|
||||
induction x with a p, induction p with f, induction f with b p, induction p,
|
||||
fapply subtype_eq,
|
||||
reflexivity,
|
||||
end
|
||||
|
||||
definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im :=
|
||||
begin
|
||||
intro x,
|
||||
fapply subtype_eq,
|
||||
refine sorry
|
||||
-- fapply ab_hom_factors_through_lift _ _ ,
|
||||
--(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _,
|
||||
intro x,
|
||||
exact (ap j_factor (subgroup_iso_exact_at_A_triangle x)) ⬝ (left_square_derived_ses_aux (subgroup_iso_exact_at_A x)),
|
||||
end
|
||||
|
||||
print quotient_extend_unique_SES
|
||||
check quotient_extend_unique_SES (SES_of_exact_couple_at_i) (SES_of_differential d H) (subgroup_homom_ker_to_im) (j_factor) (left_square_derived_ses)
|
||||
|
||||
definition derived_couple_j_unique :
|
||||
is_contr (Σ hC, group_fun (hC ∘g SES.g SES_of_exact_couple_at_i) ~ group_fun
|
||||
(SES.g (SES_of_differential d H) ∘g j_factor)) :=
|
||||
quotient_extend_unique_SES (SES_of_exact_couple_at_i) (SES_of_differential d H) (subgroup_homom_ker_to_im) (j_factor) (left_square_derived_ses)
|
||||
|
||||
definition derived_couple_j : derived_couple_A →g derived_couple_B :=
|
||||
begin
|
||||
exact pr1 (center' (derived_couple_j_unique)),
|
||||
end
|
||||
|
||||
definition derived_couple_j_htpy : group_fun (derived_couple_j ∘g SES.g SES_of_exact_couple_at_i) ~ group_fun
|
||||
(SES.g (SES_of_differential d H) ∘g j_factor) :=
|
||||
begin
|
||||
exact pr2 (center' (derived_couple_j_unique)),
|
||||
end
|
||||
|
||||
/-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
|
||||
begin
|
||||
exact sorry,
|
||||
|
|
Loading…
Reference in a new issue