work on spectrify elim
This commit is contained in:
parent
15cc880b15
commit
1b21765391
2 changed files with 17 additions and 4 deletions
|
@ -399,7 +399,7 @@ namespace seq_colim
|
||||||
equiv.mk _ !is_equiv_seq_colim_rec
|
equiv.mk _ !is_equiv_seq_colim_rec
|
||||||
end functor
|
end functor
|
||||||
|
|
||||||
definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
definition pseq_colim.elim' [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
||||||
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B :=
|
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B :=
|
||||||
begin
|
begin
|
||||||
fapply pmap.mk,
|
fapply pmap.mk,
|
||||||
|
@ -409,6 +409,10 @@ namespace seq_colim
|
||||||
{ esimp, apply respect_pt }
|
{ esimp, apply respect_pt }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
||||||
|
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~* g n) : pseq_colim @f →* B :=
|
||||||
|
pseq_colim.elim' g p
|
||||||
|
|
||||||
definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k :=
|
definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k :=
|
||||||
pmap.mk (rep0 (λn x, f x) k)
|
pmap.mk (rep0 (λn x, f x) k)
|
||||||
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
|
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
|
||||||
|
|
|
@ -431,8 +431,15 @@ namespace spectrum
|
||||||
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
|
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
|
||||||
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ)
|
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ)
|
||||||
: X n ≃* Ω[k] (X (n +' k)) :=
|
: X n ≃* Ω[k] (X (n +' k)) :=
|
||||||
by induction k with k f; reflexivity; exact f ⬝e* loopn_pequiv_loopn k (equiv_glue X (n +' k))
|
by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k))
|
||||||
⬝e* !loopn_succ_in⁻¹ᵉ*
|
⬝e* !loopn_succ_in⁻¹ᵉ*)
|
||||||
|
|
||||||
|
definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) :
|
||||||
|
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
|
||||||
|
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
|
||||||
|
begin
|
||||||
|
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv
|
||||||
|
end
|
||||||
|
|
||||||
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
||||||
begin
|
begin
|
||||||
|
@ -457,7 +464,9 @@ namespace spectrum
|
||||||
fapply smap.mk,
|
fapply smap.mk,
|
||||||
{ intro n, fapply pseq_colim.elim,
|
{ intro n, fapply pseq_colim.elim,
|
||||||
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
|
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
|
||||||
{ intro k, apply to_homotopy, exact sorry }},
|
{ intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _,
|
||||||
|
refine !passoc ⬝* _, apply pwhisker_left,
|
||||||
|
refine !passoc ⬝* _, exact sorry }},
|
||||||
{ intro n, exact sorry }
|
{ intro n, exact sorry }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue