Add Group_sum_elim.
This commit is contained in:
parent
9f1df6becb
commit
1fee1395ed
1 changed files with 7 additions and 0 deletions
|
@ -67,6 +67,13 @@ namespace group
|
||||||
definition product_inr (G H : Group) : H →g G ×g H :=
|
definition product_inr (G H : Group) : H →g G ×g H :=
|
||||||
homomorphism.mk (λx, (one, x)) (λx y, prod_eq !one_mul⁻¹ !refl)
|
homomorphism.mk (λx, (one, x)) (λx y, prod_eq !one_mul⁻¹ !refl)
|
||||||
|
|
||||||
|
definition Group_sum_elim (G H : Group) (I : AbGroup) (φ : G →g I) (ψ : H →g I) : G ×g H →g I :=
|
||||||
|
homomorphism.mk (λx, φ x.1 * ψ x.2) (λx y, calc
|
||||||
|
φ (x.1 * y.1) * ψ (x.2 * y.2) = (φ x.1 * φ y.1) * (ψ x.2 * ψ y.2)
|
||||||
|
: by exact ap011 mul (to_respect_mul φ x.1 y.1) (to_respect_mul ψ x.2 y.2)
|
||||||
|
... = (φ x.1 * ψ x.2) * (φ y.1 * ψ y.2)
|
||||||
|
: by exact interchange I (φ x.1) (φ y.1) (ψ x.2) (ψ y.2))
|
||||||
|
|
||||||
definition product_functor [constructor] {G G' H H' : Group} (φ : G →g H) (ψ : G' →g H') :
|
definition product_functor [constructor] {G G' H H' : Group} (φ : G →g H) (ψ : G' →g H') :
|
||||||
G ×g G' →g H ×g H' :=
|
G ×g G' →g H ×g H' :=
|
||||||
homomorphism.mk (λx, (φ x.1, ψ x.2)) (λx y, prod_eq !to_respect_mul !to_respect_mul)
|
homomorphism.mk (λx, (φ x.1, ψ x.2)) (λx y, prod_eq !to_respect_mul !to_respect_mul)
|
||||||
|
|
Loading…
Reference in a new issue