started on derived couple
This commit is contained in:
parent
f76e665dd3
commit
200885ad21
1 changed files with 8 additions and 0 deletions
|
@ -26,6 +26,14 @@ definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_different
|
||||||
definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
|
||||||
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
|
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
|
||||||
|
|
||||||
|
definition SES_of_differential {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology d H) :=
|
||||||
|
begin
|
||||||
|
fapply SES.mk,
|
||||||
|
sorry,
|
||||||
|
-- use the more general fact that a subgroup inclusion is a group homomorphism
|
||||||
|
-- maybe use SES_of_subgroup?
|
||||||
|
end
|
||||||
|
|
||||||
structure exact_couple (A B : AbGroup) : Type :=
|
structure exact_couple (A B : AbGroup) : Type :=
|
||||||
( i : A →g A) (j : A →g B) (k : B →g A)
|
( i : A →g A) (j : A →g B) (k : B →g A)
|
||||||
( exact_ij : is_exact i j)
|
( exact_ij : is_exact i j)
|
||||||
|
|
Loading…
Reference in a new issue