finish categorical structure of graded modules

This commit is contained in:
Floris van Doorn 2017-03-30 18:27:09 -04:00
parent f96c92b72d
commit 20a044b2e4
2 changed files with 159 additions and 45 deletions

View file

@ -13,51 +13,161 @@ definition graded_module (R : Ring) : Type → Type := graded (LeftModule R)
variables {R : Ring} {I : Type} {M M₁ M₂ M₃ : graded_module R I}
structure graded_module_hom (M₁ M₂ : graded_module R I) : Type :=
/-
morphisms between graded modules.
The definition is unconventional in two ways:
(1) The degree is determined by an endofunction instead of a element of I (and in this case we
don't need to assume that I is a group). The "standard" degree i corresponds to the endofunction
which is addition with i on the right. However, this is more flexible. For example, the
composition of two graded module homomorphisms φ₂ and φ₁ with degrees i₂ and i₁ has type
M₁ i → M₂ ((i + i₁) + i₂).
However, a homomorphism with degree i₁ + i₂ must have type
M₁ i → M₂ (i + (i₁ + i₂)),
which means that we need to insert a transport. With endofunctions this is not a problem:
λi, (i + i₁) + i₂
is a perfectly fine degree of a map
(2) Since we cannot eliminate all possible transports, we don't define a homomorphism as function
M₁ i →lm M₂ (i + deg f) or M₁ i →lm M₂ (deg f i)
but as a function taking a path as argument. Specifically, for every path
deg f i = j
we get a function M₁ i → M₂ j.
-/
structure graded_hom (M₁ M₂ : graded_module R I) : Type :=
mk' :: (d : I → I)
(fn : Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j)
(fn' : Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j)
abbreviation degree := @graded_module_hom.d
attribute graded_module_hom.fn [coercion]
notation M₁ ` →gm ` M₂ := graded_hom M₁ M₂
definition graded_module_hom.mk {M₁ M₂ : graded_module R I} (d : I → I)
(fn : Πi, M₁ i →lm M₂ (d i)) : graded_module_hom M₁ M₂ :=
graded_module_hom.mk' d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i)
abbreviation deg [unfold 5] := @graded_hom.d
notation `↘` := graded_hom.fn' -- there is probably a better character for this?
notation M₁ ` →gm ` M₂ := graded_module_hom M₁ M₂
definition graded_hom_fn [unfold 5] [coercion] (f : M₁ →gm M₂) (i : I) : M₁ i →lm M₂ (deg f i) :=
↘f idp
-- definition graded_module_hom (d : I → I) (M₁ M₂ : graded_module R I) : Type :=
-- Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j
exit
-- notation M₁ ` →[` d `] ` M₂ := graded_module_hom d M₁ M₂
variables {d d' d₁ d₂ d₃ : I → I} {f' : M₂ →[d'] M₃} {f : M₁ →[d] M₂} {f₁ : M₁ →[d₁] M₂}
{f₂ : M₁ →[d₂] M₂} {f₃ : M₁ →[d₃] M₂}
definition graded_hom.mk [constructor] {M₁ M₂ : graded_module R I} (d : I → I)
(fn : Πi, M₁ i →lm M₂ (d i)) : M₁ →gm M₂ :=
graded_hom.mk' d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i)
definition graded_module_hom_ap (f : M₁ →[d] M₂) {i : I} (x : M₁ i) : M₂ (d i) :=
f idp x
variables {f' : M₂ →gm M₃} {f : M₁ →gm M₂}
abbreviation gap := @graded_module_hom_ap
definition graded_hom_compose [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : M₁ →gm M₃ :=
graded_hom.mk (deg f' ∘ deg f) (λi, f' (deg f i) ∘lm f i)
definition is_exact_gmod (f : M₁ →[d] M₂) (f' : M₂ →[d'] M₃) : Type :=
Π{i j k} (p : d i = j) (q : d' j = k), is_exact_mod (f p) (f' q)
variable (M)
definition graded_hom_id [constructor] [refl] : M →gm M :=
graded_hom.mk id (λi, lmid)
variable {M}
abbreviation gmid [constructor] := graded_hom_id M
infixr ` ∘gm `:75 := graded_hom_compose
structure graded_iso (M₁ M₂ : graded_module R I) : Type :=
(to_hom : M₁ →gm M₂)
(is_equiv_deg : is_equiv (deg to_hom))
(is_equiv_to_hom : Π⦃i j⦄ (p : deg to_hom i = j), is_equiv (↘to_hom p))
infix ` ≃gm `:25 := graded_iso
attribute graded_iso.to_hom [coercion]
attribute graded_iso.is_equiv_deg [instance] [priority 1010]
attribute graded_iso._trans_of_to_hom [unfold 5]
definition is_equiv_graded_iso [instance] [priority 1010] (φ : M₁ ≃gm M₂) (i : I) :
is_equiv (φ i) :=
graded_iso.is_equiv_to_hom φ idp
definition isomorphism_of_graded_iso' [constructor] (φ : M₁ ≃gm M₂) {i j : I} (p : deg φ i = j) :
M₁ i ≃lm M₂ j :=
isomorphism.mk (↘φ p) !graded_iso.is_equiv_to_hom
definition isomorphism_of_graded_iso [constructor] (φ : M₁ ≃gm M₂) (i : I) :
M₁ i ≃lm M₂ (deg φ i) :=
isomorphism.mk (φ i) _
definition graded_iso_of_isomorphism [constructor] (d : I ≃ I) (φ : Πi, M₁ i ≃lm M₂ (d i)) :
M₁ ≃gm M₂ :=
begin
apply graded_iso.mk (graded_hom.mk d φ), apply to_is_equiv, intro i j p, induction p,
exact to_is_equiv (equiv_of_isomorphism (φ i)),
end
definition graded_iso_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂)
: M₁ ≃gm M₂ :=
graded_iso_of_isomorphism erfl (λi, isomorphism_of_eq (p i))
-- definition graded_iso.MK [constructor] (d : I ≃ I) (fn : Πi, M₁ i →lm M₂ (d i))
-- : M₁ ≃gm M₂ :=
-- graded_iso.mk _ _ _ --d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i)
definition isodeg [unfold 5] (φ : M₁ ≃gm M₂) : I ≃ I :=
equiv.mk (deg φ) _
definition graded_iso_to_lminv [constructor] (φ : M₁ ≃gm M₂) : M₂ →gm M₁ :=
graded_hom.mk (deg φ)⁻¹
abstract begin
intro i, apply to_lminv,
apply isomorphism_of_graded_iso' φ,
apply to_right_inv (isodeg φ) i
end end
definition to_gminv [constructor] (φ : M₁ ≃gm M₂) : M₂ →gm M₁ :=
graded_hom.mk (deg φ)⁻¹
abstract begin
intro i, apply isomorphism.to_hom, symmetry,
apply isomorphism_of_graded_iso' φ,
apply to_right_inv (isodeg φ) i
end end
variable (M)
definition graded_iso.refl [refl] [constructor] : M ≃gm M :=
graded_iso_of_isomorphism equiv.rfl (λi, isomorphism.rfl)
variable {M}
definition graded_iso.rfl [refl] [constructor] : M ≃gm M := graded_iso.refl M
definition graded_iso.symm [symm] [constructor] (φ : M₁ ≃gm M₂) : M₂ ≃gm M₁ :=
graded_iso.mk (to_gminv φ) !is_equiv_inv
(λi j p, @is_equiv_compose _ _ _ _ _ !isomorphism.is_equiv_to_hom !is_equiv_cast)
definition graded_iso.trans [trans] [constructor] (φ : M₁ ≃gm M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ :=
graded_iso_of_isomorphism (isodeg φ ⬝e isodeg ψ)
(λi, isomorphism_of_graded_iso φ i ⬝lm isomorphism_of_graded_iso ψ (deg φ i))
definition graded_iso.eq_trans [trans] [constructor]
{M₁ M₂ : graded_module R I} {M₃ : graded_module R I} (φ : M₁ ~ M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ :=
proof graded_iso.trans (graded_iso_of_eq φ) ψ qed
definition graded_iso.trans_eq [trans] [constructor]
{M₁ : graded_module R I} {M₂ M₃ : graded_module R I} (φ : M₁ ≃gm M₂) (ψ : M₂ ~ M₃) : M₁ ≃gm M₃ :=
graded_iso.trans φ (graded_iso_of_eq ψ)
postfix `⁻¹ᵍᵐ`:(max + 1) := graded_iso.symm
infixl ` ⬝gm `:75 := graded_iso.trans
infixl ` ⬝gmp `:75 := graded_iso.trans_eq
infixl ` ⬝pgm `:75 := graded_iso.eq_trans
definition graded_hom_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂)
: M₁ →gm M₂ :=
graded_iso_of_eq p
/- exact couples -/
definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type :=
Π{i j k} (p : deg f i = j) (q : deg f' j = k), is_exact_mod (↘f p) (↘f' q)
structure exact_couple (M₁ M₂ : graded_module R I) : Type :=
(di dj dk : I → I)
( i : M₁ →[di] M₁) (j : M₁ →[dj] M₂) (k : M₂ →[dk] M₁)
(i : M₁ →gm M₁) (j : M₁ →gm M₂) (k : M₂ →gm M₁)
(exact_ij : is_exact_gmod i j)
(exact_jk : is_exact_gmod j k)
(exact_ki : is_exact_gmod k i)
variables {di dj dk : I → I}
{i : M₁ →[di] M₁} {j : M₁ →[dj] M₂} {k : M₂ →[dk] M₁}
variables {i : M₁ →gm M₁} {j : M₁ →gm M₂} {k : M₂ →gm M₁}
(exact_ij : is_exact_gmod i j)
(exact_jk : is_exact_gmod j k)
(exact_ki : is_exact_gmod k i)
namespace derived_couple
definition d : graded_module_hom _ M₂ M₂ :=
_
definition d : M₂ →gm M₂ := j ∘gm k
end derived_couple

View file

@ -1,7 +1,7 @@
/-
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad
Authors: Nathaniel Thomas, Jeremy Avigad, Floris van Doorn
Modules prod vector spaces over a ring.
@ -221,13 +221,19 @@ end
section
variables {M M₁ M₂ M₃ : LeftModule R}
definition LeftModule.struct2 [instance] (M : LeftModule R) : left_module R M :=
LeftModule.struct M
definition homomorphism.mk' [constructor] (φ : M₁ → M₂)
(p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
(q : Π(r : R) x, φ (r • x) = r • φ x) : M₁ →lm M₂ :=
homomorphism.mk φ (p, q)
definition to_respect_zero (φ : M₁ →lm M₂) : φ 0 = 0 :=
respect_zero φ
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=
@is_exact M₁ M₂ M₃ (homomorphism_fn f) (homomorphism_fn f')
definition homomorphism_compose (f' : M₂ →lm M₃) (f : M₁ →lm M₂) : M₁ →lm M₃ :=
definition homomorphism_compose [constructor] (f' : M₂ →lm M₃) (f : M₁ →lm M₂) : M₁ →lm M₃ :=
homomorphism.mk (f' ∘ f) !is_module_hom_comp
variable (M)
@ -253,13 +259,6 @@ end
definition pequiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃* M₂ :=
pequiv_of_equiv (equiv_of_isomorphism φ) (to_respect_zero φ)
definition LeftModule.struct2 [instance] (M : LeftModule R) : left_module R M :=
LeftModule.struct M
definition homomorphism.mk' (φ : M₁ → M₂) (p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
(q : Π(r : R) x, φ (r • x) = r • φ x) : M₁ →lm M₂ :=
homomorphism.mk φ (p, q)
definition isomorphism_of_equiv [constructor] (φ : M₁ ≃ M₂)
(p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
(q : Πr x, φ (r • x) = r • φ x) : M₁ ≃lm M₂ :=
@ -281,7 +280,7 @@ end
-- { apply is_prop.elim}
-- end
definition to_ginv [constructor] (φ : M₁ ≃lm M₂) : M₂ →lm M₁ :=
definition to_lminv [constructor] (φ : M₁ ≃lm M₂) : M₂ →lm M₁ :=
homomorphism.mk φ⁻¹
abstract begin
split,
@ -296,8 +295,10 @@ end
isomorphism.mk lmid !is_equiv_id
variable {M}
definition isomorphism.rfl [refl] [constructor] : M ≃lm M := isomorphism.refl M
definition isomorphism.symm [symm] [constructor] (φ : M₁ ≃lm M₂) : M₂ ≃lm M₁ :=
isomorphism.mk (to_ginv φ) !is_equiv_inv
isomorphism.mk (to_lminv φ) !is_equiv_inv
definition isomorphism.trans [trans] [constructor] (φ : M₁ ≃lm M₂) (ψ : M₂ ≃lm M₃) : M₁ ≃lm M₃ :=
isomorphism.mk (ψ ∘lm φ) !is_equiv_compose
@ -319,6 +320,9 @@ end
: M₁ →lm M₂ :=
isomorphism_of_eq p
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=
@is_exact M₁ M₂ M₃ (homomorphism_fn f) (homomorphism_fn f')
end
end