seq_colim_elim added
This commit is contained in:
parent
9256bf8861
commit
21a0dcfcfe
1 changed files with 10 additions and 3 deletions
|
@ -18,14 +18,21 @@ namespace group
|
|||
definition seq_colim_incl [constructor] (i : ℕ) : A i →g seq_colim :=
|
||||
qg_map _ ∘g dirsum_incl A i
|
||||
|
||||
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (i + 1) (f i a))
|
||||
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a))
|
||||
(v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 :=
|
||||
begin
|
||||
induction r with r, induction r, exact sorry
|
||||
induction r with r, induction r,
|
||||
refine !to_respect_mul ⬝ _,
|
||||
refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ) (!to_respect_inv)⁻¹ ⬝ _,
|
||||
refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹)) !dirsum_elim_compute ⬝ _,
|
||||
refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _,
|
||||
refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _,
|
||||
refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _,
|
||||
exact !mul.right_inv
|
||||
end
|
||||
|
||||
definition seq_colim_elim [constructor] (h : Πi, A i →g A')
|
||||
(k : Πi a, h i a = h (i + 1) (f i a)) : seq_colim →g A' :=
|
||||
(k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' :=
|
||||
gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k)
|
||||
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue