complete is_trivial_subgroup
This commit is contained in:
parent
6cec5dcdaa
commit
22d8fad087
1 changed files with 7 additions and 1 deletions
|
@ -22,6 +22,8 @@ namespace group
|
|||
(Rmul : Π{g h}, R g → R h → R (g * h))
|
||||
(Rinv : Π{g}, R g → R (g⁻¹))
|
||||
|
||||
attribute subgroup_rel.R [coercion]
|
||||
|
||||
/-- Every group G has at least two subgroups, the trivial subgroup containing only one, and the full subgroup. --/
|
||||
definition trivial_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u u} G :=
|
||||
begin
|
||||
|
@ -32,7 +34,11 @@ namespace group
|
|||
{ intros g p, esimp at *, rewrite p, exact one_inv }
|
||||
end
|
||||
|
||||
definition is_trivial_subgroup (G : Group) (R : subgroup_rel G) : Prop := sorry /- Π g, R g = trivial_subgroup g -/
|
||||
definition is_trivial_subgroup (G : Group) (R : subgroup_rel G) : Prop :=
|
||||
trunctype.mk (Π g : G, R g ↔ trivial_subgroup G g)
|
||||
begin
|
||||
apply pi.is_trunc_pi, intro g, apply is_trunc_prod
|
||||
end
|
||||
|
||||
definition full_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u 0} G :=
|
||||
begin
|
||||
|
|
Loading…
Reference in a new issue