From 266e37d9ed3023296d996e49cacf73e53eb5195d Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Fri, 5 Oct 2018 18:01:43 -0400 Subject: [PATCH] prove some properties about first quadrant spectral sequences where the degree of d is as usual --- algebra/spectral_sequence.hlean | 32 ++++++++++++++++++++++++++++++++ cohomology/serre.hlean | 20 +++++++++++++++++--- 2 files changed, 49 insertions(+), 3 deletions(-) diff --git a/algebra/spectral_sequence.hlean b/algebra/spectral_sequence.hlean index eb235fb..ec3bdcf 100644 --- a/algebra/spectral_sequence.hlean +++ b/algebra/spectral_sequence.hlean @@ -24,6 +24,7 @@ structure convergent_spectral_sequence.{u v w} {R : Ring} (E' : ℤ → ℤ → (lb : ℤ → ℤ) (HDinf : Π(n : ℤ), is_built_from (Dinf n) (λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n))) +/- todo: the current definition doesn't say that E (s₀ x) x is contractible for x.1 + x.2 = n and x.2 < lb n -/ definition convergent_spectral_sequence_g [reducible] (E' : ℤ → ℤ → AbGroup) (Dinf : ℤ → AbGroup) : Type := @@ -139,5 +140,36 @@ namespace spectral_sequence Einf c (n, s) ≃lm E' n s := E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r) + /- we call a spectral sequence normal if it is a first-quadrant spectral sequence and the degree of d is what we expect -/ + include c + structure is_normal : Type := + (normal1 : Π{n} s, n < 0 → is_contr (E' n s)) + (normal2 : Πn {s}, s < 0 → is_contr (E' n s)) + (normal3 : Π(r : ℕ), deg_d c r = (r+2, -(r+1))) + open is_normal + variable {c} + variable (d : is_normal c) + include d + definition stable_range {n s : ℤ} {r : ℕ} (H1 : n < r + 2) (H2 : s < r + 1) : + Einf c (n, s) ≃lm E c r (n, s) := + begin + fapply Einf_isomorphism, + { intro r' Hr', apply is_contr_E, apply normal1 d, + refine lt_of_le_of_lt (le_of_eq (ap (λx, n - x.1) (normal3 d r'))) _, + apply sub_lt_left_of_lt_add, + refine lt_of_lt_of_le H1 (le.trans _ (le_of_eq !add_zero⁻¹)), + exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 2 }, + { intro r' Hr', apply is_contr_E, apply normal2 d, + refine lt_of_le_of_lt (le_of_eq (ap (λx, s + x.2) (normal3 d r'))) _, + change s - (r' + 1) < 0, + apply sub_lt_left_of_lt_add, + refine lt_of_lt_of_le H2 (le.trans _ (le_of_eq !add_zero⁻¹)), + exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 1 }, + end + /- some properties which use the degree of the spectral sequence we construct. For the AHSS and SSS the hypothesis is by reflexivity -/ + + +-- definition foo + end spectral_sequence diff --git a/cohomology/serre.hlean b/cohomology/serre.hlean index e6c6ab4..64d8a8d 100644 --- a/cohomology/serre.hlean +++ b/cohomology/serre.hlean @@ -244,9 +244,23 @@ section atiyah_hirzebruch definition AHSS_deg_d (r : ℕ) : convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r = (r + 2, -(r + 1)) := - begin - reflexivity - end + by reflexivity + + definition AHSS_lb (n : ℤ) : + convergent_spectral_sequence.lb atiyah_hirzebruch_spectral_sequence n = -s₀ := + by reflexivity + + -- open nat + -- definition AHSS_ub (n : ℤ) : + -- is_built_from.n₀ (convergent_spectral_sequence.HDinf atiyah_hirzebruch_spectral_sequence n) = + -- max0 (s₀ + n) + 1 := + -- begin + -- -- refine refl (max (max0 (- - - -s₀ - (-(- -s₀ - -(s₀ - -n + -s₀) + - - -s₀) - 1))) + -- -- (max0 (max (s₀ + 1 - - - - -s₀) (s₀ + 1 - - - - -s₀)))) ⬝ _, + + -- -- exact ap011 max (ap max0 (ap011 add (!neg_neg ⬝ !neg_neg) _)) _ ⬝ _, + -- exact sorry + -- end end atiyah_hirzebruch