make everything compile on lean post 6f74f6522...
This commit is contained in:
parent
960e7075bd
commit
288e0d71b2
6 changed files with 21 additions and 74 deletions
|
@ -1,5 +1,5 @@
|
|||
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
|
||||
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra
|
||||
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex prod fin algebra
|
||||
group trunc_index function join pushout
|
||||
|
||||
namespace nat
|
||||
|
@ -87,58 +87,23 @@ namespace is_conn
|
|||
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro x, induction x with a o v,
|
||||
{ exact a},
|
||||
{ exact empty.elim o},
|
||||
{ exact empty.elim (pr2 v)}},
|
||||
{ exact pushout.inl},
|
||||
{ intro x, induction x with a o a o,
|
||||
{ exact a },
|
||||
{ exact empty.elim o },
|
||||
{ exact empty.elim o } },
|
||||
{ exact pushout.inl },
|
||||
{ intro a, reflexivity},
|
||||
{ intro x, induction x with a o v,
|
||||
{ reflexivity},
|
||||
{ exact empty.elim o},
|
||||
{ exact empty.elim (pr2 v)}}
|
||||
{ intro x, induction x with a o a o,
|
||||
{ reflexivity },
|
||||
{ exact empty.elim o },
|
||||
{ exact empty.elim o } }
|
||||
end
|
||||
|
||||
definition join_functor [unfold 7] {A A' B B' : Type} (f : A → A') (g : B → B') :
|
||||
join A B → join A' B' :=
|
||||
begin
|
||||
intro x, induction x with a b v,
|
||||
{ exact inl (f a)},
|
||||
{ exact inr (g b)},
|
||||
{ exact glue (f (pr1 v), g (pr2 v))}
|
||||
end
|
||||
|
||||
theorem join_functor_glue {A A' B B' : Type} (f : A → A') (g : B → B')
|
||||
(v : A × B) : ap (join_functor f g) (glue v) = glue (f (pr1 v), g (pr2 v)) :=
|
||||
!elim_glue
|
||||
|
||||
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
|
||||
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
|
||||
: square (ap f p) (ap g q) (h a b) (h a' b') :=
|
||||
by induction p; induction q; exact hrfl
|
||||
|
||||
definition join_equiv_join {A A' B B' : Type} (f : A ≃ A') (g : B ≃ B') :
|
||||
join A B ≃ join A' B' :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ apply join_functor f g},
|
||||
{ apply join_functor f⁻¹ g⁻¹},
|
||||
{ intro x', induction x' with a' b' v',
|
||||
{ esimp, exact ap inl (right_inv f a')},
|
||||
{ esimp, exact ap inr (right_inv g b')},
|
||||
{ cases v' with a' b', apply eq_pathover,
|
||||
rewrite [▸*, ap_id, ap_compose' (join_functor _ _), ▸*],
|
||||
xrewrite [+join_functor_glue, ▸*],
|
||||
exact natural_square2 jglue (right_inv f a') (right_inv g b')}},
|
||||
{ intro x, induction x with a b v,
|
||||
{ esimp, exact ap inl (left_inv f a)},
|
||||
{ esimp, exact ap inr (left_inv g b)},
|
||||
{ cases v with a b, apply eq_pathover,
|
||||
rewrite [▸*, ap_id, ap_compose' (join_functor _ _), ▸*],
|
||||
xrewrite [+join_functor_glue, ▸*],
|
||||
exact natural_square2 jglue (left_inv f a) (left_inv g b)}}
|
||||
end
|
||||
|
||||
section
|
||||
open sphere sphere_index
|
||||
|
||||
|
@ -149,19 +114,6 @@ namespace is_conn
|
|||
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
|
||||
begin induction m with m IH, reflexivity, exact ap succ IH end
|
||||
|
||||
definition sphere_join_sphere (n m : ℕ₋₁) : join (sphere n) (sphere m) ≃ sphere (n +1+ m) :=
|
||||
begin
|
||||
revert n, induction m with m IH: intro n,
|
||||
{ apply join_empty_right},
|
||||
{ rewrite [sphere_succ m],
|
||||
refine join_equiv_join erfl !join.bool⁻¹ᵉ ⬝e _,
|
||||
refine !join.assoc⁻¹ᵉ ⬝e _,
|
||||
refine join_equiv_join !join.symm erfl ⬝e _,
|
||||
refine join_equiv_join !join.bool erfl ⬝e _,
|
||||
rewrite [-sphere_succ n],
|
||||
refine !IH ⬝e _,
|
||||
rewrite [add_plus_one_succ, succ_add_plus_one]}
|
||||
end
|
||||
end
|
||||
|
||||
end is_conn
|
||||
|
|
|
@ -208,9 +208,10 @@ namespace chain_complex
|
|||
theorem fiber_sequence_fun_eq : Π(x : fiber_sequence_carrier f (n + 4)),
|
||||
fiber_sequence_carrier_pequiv f n (fiber_sequence_fun f (n + 3) x) =
|
||||
ap1 (fiber_sequence_fun f n) (fiber_sequence_carrier_pequiv f (n + 1) x)⁻¹ :=
|
||||
homotopy_of_inv_homotopy
|
||||
(pequiv.to_equiv (fiber_sequence_carrier_pequiv f (n + 1)))
|
||||
(fiber_sequence_fun_eq_helper f n)
|
||||
begin
|
||||
apply homotopy_of_inv_homotopy_pre (fiber_sequence_carrier_pequiv f (n + 1)),
|
||||
apply fiber_sequence_fun_eq_helper f n
|
||||
end
|
||||
|
||||
theorem fiber_sequence_fun_phomotopy :
|
||||
fiber_sequence_carrier_pequiv f n ∘*
|
||||
|
|
|
@ -209,8 +209,8 @@ namespace chain_complex
|
|||
have H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt,
|
||||
begin
|
||||
refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y,
|
||||
refine inv_homotopy_of_homotopy (pequiv.to_equiv e) _,
|
||||
apply inv_homotopy_of_homotopy, apply p
|
||||
apply inv_homotopy_of_homotopy_pre e,
|
||||
apply inv_homotopy_of_homotopy_pre, apply p
|
||||
end,
|
||||
induction (H _ H2) with x r,
|
||||
refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _,
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
import homotopy.connectedness homotopy.join
|
||||
|
||||
open eq sigma pi function join homotopy is_trunc equiv is_equiv
|
||||
open eq sigma pi function join is_conn is_trunc equiv is_equiv
|
||||
|
||||
namespace retraction
|
||||
variables {A B C : Type} (r2 : B → C) (r1 : A → B)
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
import homotopy.wedge types.pi .LES_applications --TODO: remove
|
||||
|
||||
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
|
||||
open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
|
||||
|
||||
-- definition iterated_loop_ptrunc_pequiv_con' (n : ℕ₋₂) (k : ℕ) (A : Type*)
|
||||
-- (p q : Ω[k](ptrunc (n+k) (Ω A))) :
|
||||
|
@ -253,8 +253,8 @@ namespace sphere
|
|||
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||||
end
|
||||
|
||||
print phomotopy_group_pequiv_loop_ptrunc
|
||||
print iterated_loop_ptrunc_pequiv
|
||||
--print phomotopy_group_pequiv_loop_ptrunc
|
||||
--print iterated_loop_ptrunc_pequiv
|
||||
-- definition to_fun_stability_pequiv (k n : ℕ) (H : k + 3 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
|
||||
-- : stability_pequiv (k+1) n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) (k+1))) :=
|
||||
-- sorry
|
||||
|
|
|
@ -144,13 +144,7 @@ namespace spherical_fibrations
|
|||
definition tau : S 2 → BG 2 :=
|
||||
begin
|
||||
intro v, induction v with x, do 2 exact pt,
|
||||
fapply sigma_eq,
|
||||
{ apply ua, fapply equiv.MK,
|
||||
{ },
|
||||
{ },
|
||||
{ },
|
||||
{ } },
|
||||
{ }
|
||||
exact sorry
|
||||
end
|
||||
|
||||
end two_sphere
|
||||
|
|
Loading…
Add table
Reference in a new issue