clean-up in imports/opens of the files in the algebra folder
This commit is contained in:
parent
79dea677e8
commit
29bf3bdd8e
6 changed files with 20 additions and 26 deletions
|
@ -6,10 +6,10 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Constructions with groups
|
||||
-/
|
||||
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group .free_commutative_group
|
||||
import .quotient_group .free_commutative_group
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
|
|
|
@ -6,14 +6,13 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Constructions with groups
|
||||
-/
|
||||
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
||||
|
|
|
@ -6,14 +6,13 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Constructions with groups
|
||||
-/
|
||||
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
|
||||
/- Free Group of a set -/
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
|
|
|
@ -6,16 +6,12 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Constructions with groups
|
||||
-/
|
||||
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group .free_commutative_group .direct_sum
|
||||
import .free_commutative_group
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
open eq algebra is_trunc sigma sigma.ops prod trunc function equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A B : CommGroup}
|
||||
|
||||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
||||
|
||||
/- Tensor group (WIP) -/
|
||||
|
||||
|
|
|
@ -6,10 +6,10 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Constructions with groups
|
||||
-/
|
||||
|
||||
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup
|
||||
import hit.set_quotient .subgroup
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
|
|
|
@ -6,10 +6,10 @@ Authors: Floris van Doorn, Egbert Rijke
|
|||
Basic concepts of group theory
|
||||
-/
|
||||
|
||||
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum
|
||||
import algebra.group_theory
|
||||
|
||||
open eq algebra is_trunc sigma sigma.ops prod trunc
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
namespace group
|
||||
|
||||
/- #Subgroups -/
|
||||
|
|
Loading…
Reference in a new issue