clean-up in imports/opens of the files in the algebra folder

This commit is contained in:
Floris van Doorn 2016-10-13 16:01:17 -04:00
parent 79dea677e8
commit 29bf3bdd8e
6 changed files with 20 additions and 26 deletions

View file

@ -6,10 +6,10 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group .free_commutative_group
import .quotient_group .free_commutative_group
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}

View file

@ -6,14 +6,13 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : CommGroup}
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
variables (X : Set) {l l' : list (X ⊎ X)}

View file

@ -6,14 +6,13 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group
import algebra.group_theory hit.set_quotient types.list types.sum
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : CommGroup}
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
/- Free Group of a set -/
variables (X : Set) {l l' : list (X ⊎ X)}

View file

@ -6,16 +6,12 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group .free_commutative_group .direct_sum
import .free_commutative_group
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
open eq algebra is_trunc sigma sigma.ops prod trunc function equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : CommGroup}
variables (X : Set) {l l' : list (X ⊎ X)}
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
/- Tensor group (WIP) -/

View file

@ -6,10 +6,10 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup
import hit.set_quotient .subgroup
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}

View file

@ -6,10 +6,10 @@ Authors: Floris van Doorn, Egbert Rijke
Basic concepts of group theory
-/
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum
import algebra.group_theory
open eq algebra is_trunc sigma sigma.ops prod trunc
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
namespace group
/- #Subgroups -/