add the universal property of quotient as exercises

This commit is contained in:
Floris van Doorn 2016-09-14 17:31:37 -04:00
parent 17d76bdb31
commit 2bf316e347

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn, Egbert Rijke
Constructions with groups Constructions with groups
-/ -/
import algebra.subgroup hit.set_quotient types.list types.sum .group_basics import algebra.group_theory hit.set_quotient types.list types.sum .subgroup
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv equiv
@ -78,7 +78,7 @@ namespace group
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc] g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc ... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv], ... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
show N ((g * g') * (h * h')⁻¹), from H2 H1 show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1
local attribute is_equivalence_quotient_rel [instance] local attribute is_equivalence_quotient_rel [instance]
@ -154,6 +154,36 @@ namespace group
: CommGroup := : CommGroup :=
CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N)) CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N))
definition gq_map : G →g quotient_group N :=
sorry
namespace quotient
notation `⟦`:max a `⟧`:0 := gq_map a _
end quotient
open quotient
variable {N}
definition gq_map_eq_one (g : G) (H : N g) : gq_map N g = 1 :=
sorry
definition rel_of_gq_map_eq_one (g : G) (H : gq_map N g = 1) : N g :=
sorry
definition glift (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
sorry
definition glift_gq_map (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : glift f H ∘g gq_map N ~ f :=
sorry
definition glift_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : quotient_group N →g G') :
g ~ glift f H :=
sorry
definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) :=
sorry
/- Binary products (direct sums) of Groups -/ /- Binary products (direct sums) of Groups -/
definition product_one [constructor] : G × G' := (one, one) definition product_one [constructor] : G × G' := (one, one)
definition product_inv [unfold 3] : G × G' → G × G' := definition product_inv [unfold 3] : G × G' → G × G' :=