This commit is contained in:
spiceghello 2017-06-08 09:16:57 -06:00
parent 480bcd5dee
commit 2e9a225a82

View file

@ -350,16 +350,11 @@ namespace seq_colim
apply whisker_right, esimp,
rewrite[(eq_con_inv_of_con_eq (!to_homotopy_pt))],
rewrite[ap_con], esimp,
rewrite[-+con.assoc],
rewrite[ap_con], rewrite[-ap_compose'],
rewrite[+ap_inv],
rewrite[-+con.assoc, ap_con, -ap_compose', +ap_inv],
rewrite[-+con.assoc],
refine _ ⬝ whisker_right _ (whisker_right _ (whisker_right _ (whisker_right _ !con.left_inv⁻¹))),
rewrite[idp_con],
rewrite[+con.assoc], apply whisker_left,
rewrite[ap_con], rewrite[-ap_compose'],
rewrite[con_inv],
rewrite[+con.assoc], apply whisker_left,
rewrite[idp_con, +con.assoc], apply whisker_left,
rewrite[ap_con, -ap_compose', con_inv, +con.assoc], apply whisker_left,
refine eq_inv_con_of_con_eq _,
symmetry, exact eq_of_square !natural_square
}
@ -368,7 +363,9 @@ namespace seq_colim
definition seq_colim_equiv_constant_pinclusion {A : → Type*} {f f' : Π⦃n⦄, A n →* A (n+1)}
(p : Π⦃n⦄ (a : A n), f a = f' a) (n : ) :
pseq_colim_equiv_constant p ∘* pinclusion f n ~* pinclusion f' n :=
sorry
begin
sorry
end
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
is_equiv (seq_colim_rec_unc :