higher groups: finalize file
This commit is contained in:
parent
e34fba2027
commit
2f957b7828
2 changed files with 149 additions and 43 deletions
|
@ -45,7 +45,7 @@ structure ωGType (n : ℕ) := /- (n,ω)GType, denoted here as [n;ω]GType -/
|
|||
|
||||
attribute InfGType.car GType.car [coercion]
|
||||
|
||||
variables {n k l : ℕ}
|
||||
variables {n k k' l : ℕ}
|
||||
notation `[`:95 n:0 `; ` k `]GType`:0 := GType n k
|
||||
notation `[∞; `:95 k:0 `]GType`:0 := InfGType k
|
||||
notation `[`:95 n:0 `;ω]GType`:0 := ωGType n
|
||||
|
@ -132,7 +132,33 @@ eq_equiv_fn_eq_of_equiv (InfGType_equiv k) _ _ ⬝e !pconntype_eq_equiv
|
|||
definition InfGType_eq {k : ℕ} {G H : [∞;k]GType} (e : iB G ≃* iB H) : G = H :=
|
||||
(InfGType_eq_equiv G H)⁻¹ᵉ e
|
||||
|
||||
-- maybe to do: ωGType ≃ Σ(X : spectrum), is_sconn n X
|
||||
/- alternative constructor for ωGType -/
|
||||
|
||||
definition ωGType.mk_le {n : ℕ} (k₀ : ℕ)
|
||||
(C : Π⦃k : ℕ⦄, k₀ ≤ k → ((n+k)-Type*[k.-1] : Type.{u+1}))
|
||||
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), C H ≃* Ω (C (le.step H))) : ([n;ω]GType : Type.{u+1}) :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ apply rec_down_le _ k₀ C, intro n' D,
|
||||
refine (ptruncconntype.mk (Ω D) _ pt _),
|
||||
apply is_trunc_loop, apply is_trunc_ptruncconntype, apply is_conn_loop,
|
||||
apply is_conn_ptruncconntype },
|
||||
{ intro n', apply rec_down_le_univ, exact e, intro n D, reflexivity }
|
||||
end
|
||||
|
||||
definition ωGType.mk_le_beta {n : ℕ} {k₀ : ℕ}
|
||||
(C : Π⦃k : ℕ⦄, k₀ ≤ k → ((n+k)-Type*[k.-1] : Type.{u+1}))
|
||||
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), C H ≃* Ω (C (le.step H)))
|
||||
(k : ℕ) (H : k₀ ≤ k) : oB (ωGType.mk_le k₀ C e) k ≃* C H :=
|
||||
ptruncconntype_eq_equiv _ _ !rec_down_le_beta_ge
|
||||
|
||||
definition GType_hom (G H : [n;k]GType) : Type :=
|
||||
B G →* B H
|
||||
|
||||
definition ωGType_hom (G H : [n;ω]GType) : Type* :=
|
||||
pointed.MK
|
||||
(Σ(f : Πn, oB G n →* oB H n), Πn, psquare (f n) (Ω→ (f (n+1))) (oe G n) (oe H n))
|
||||
⟨λn, pconst (oB G n) (oB H n), λn, !phconst_square ⬝vp* !ap1_pconst⟩
|
||||
|
||||
/- Constructions on higher groups -/
|
||||
definition Decat (G : [n+1;k]GType) : [n;k]GType :=
|
||||
|
@ -174,7 +200,13 @@ definition InfDecat_adjoint_InfDisc (G : [∞;k]GType) (H : [n;k]GType) :
|
|||
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
|
||||
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
|
||||
|
||||
/- To do: naturality -/
|
||||
definition InfDecat_adjoint_InfDisc_natural {G G' : [∞;k]GType} {H H' : [n;k]GType}
|
||||
(g : iB G' →* iB G) (h : B H →* B H') :
|
||||
psquare (InfDecat_adjoint_InfDisc G H)
|
||||
(InfDecat_adjoint_InfDisc G' H')
|
||||
(ppcompose_left h ∘* ppcompose_right (ptrunc_functor _ g))
|
||||
(ppcompose_left h ∘* ppcompose_right g) :=
|
||||
pmap_ptrunc_pequiv_natural (n + k) g h
|
||||
|
||||
definition InfDecat_InfDisc (G : [n;k]GType) : InfDecat n (InfDisc n G) = G :=
|
||||
GType_eq !ptrunc_pequiv
|
||||
|
@ -204,8 +236,6 @@ definition Deloop_adjoint_Loop_natural {G G' : [n;k+1]GType} {H H' : [n+1;k]GTyp
|
|||
(ppcompose_left (connect_functor k h) ∘* ppcompose_right g) :=
|
||||
(connect_intro_pequiv_natural g h _ _)⁻¹ʰ*
|
||||
|
||||
/- to do: naturality -/
|
||||
|
||||
definition Loop_Deloop (G : [n;k+1]GType) : Loop (Deloop G) = G :=
|
||||
GType_eq (connect_pequiv (is_conn_pconntype (B G)))
|
||||
|
||||
|
@ -227,6 +257,10 @@ GType.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
|
|||
exact ptrunc_change_index !of_nat_add_of_nat _
|
||||
end end
|
||||
|
||||
definition Stabilize_pequiv {G H : [n;k]GType} (e : B G ≃* B H) :
|
||||
B (Stabilize G) ≃* B (Stabilize H) :=
|
||||
ptrunc_pequiv_ptrunc (n+k+1) (susp_pequiv e)
|
||||
|
||||
definition Stabilize_adjoint_Forget (G : [n;k]GType) (H : [n;k+1]GType) :
|
||||
ppmap (B (Stabilize G)) (B H) ≃* ppmap (B G) (B (Forget H)) :=
|
||||
have is_trunc (n + k + 1) (B H), from !is_trunc_B,
|
||||
|
@ -245,18 +279,6 @@ begin
|
|||
exact susp_adjoint_loop_natural_left g ⬝v* susp_adjoint_loop_natural_right h
|
||||
end
|
||||
|
||||
/- to do: naturality -/
|
||||
|
||||
definition ωForget (k : ℕ) (G : [n;ω]GType) : [n;k]GType :=
|
||||
have is_trunc (n + k) (oB G k), from _,
|
||||
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn_nat,
|
||||
GType.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
|
||||
|
||||
definition nStabilize (H : k ≤ l) (G : GType.{u} n k) : GType.{u} n l :=
|
||||
begin
|
||||
induction H with l H IH, exact G, exact Stabilize IH
|
||||
end
|
||||
|
||||
definition Forget_Stabilize (H : k ≥ n + 2) (G : [n;k]GType) : B (Forget (Stabilize G)) ≃* B G :=
|
||||
loop_ptrunc_pequiv _ _ ⬝e*
|
||||
begin
|
||||
|
@ -288,35 +310,83 @@ begin
|
|||
{ intro G, apply GType_eq, exact Forget_Stabilize H G }
|
||||
end
|
||||
|
||||
definition ωGType.mk_le {n : ℕ} (k₀ : ℕ)
|
||||
(C : Π⦃k : ℕ⦄, k₀ ≤ k → ((n+k)-Type*[k.-1] : Type.{u+1}))
|
||||
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), C H ≃* Ω (C (le.step H))) : ([n;ω]GType : Type.{u+1}) :=
|
||||
/- an incomplete formalization of ω-Stabilization -/
|
||||
definition ωForget (k : ℕ) (G : [n;ω]GType) : [n;k]GType :=
|
||||
have is_trunc (n + k) (oB G k), from _,
|
||||
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn_nat,
|
||||
GType.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
|
||||
|
||||
definition nStabilize (H : k ≤ l) (G : GType.{u} n k) : GType.{u} n l :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ apply rec_down_le _ k₀ C, intro n' D,
|
||||
refine (ptruncconntype.mk (Ω D) _ pt _),
|
||||
apply is_trunc_loop, apply is_trunc_ptruncconntype, apply is_conn_loop,
|
||||
apply is_conn_ptruncconntype },
|
||||
{ intro n', apply rec_down_le_univ, exact e, intro n D, reflexivity }
|
||||
induction H with l H IH, exact G, exact Stabilize IH
|
||||
end
|
||||
|
||||
/- for l ≤ k we want to define it as Ω[k-l] (B G),
|
||||
for H : l ≥ k we want to define it as nStabilize H G -/
|
||||
definition nStabilize_pequiv (H H' : k ≤ l) {G G' : [n;k]GType}
|
||||
(e : B G ≃* B G') : B (nStabilize H G) ≃* B (nStabilize H' G') :=
|
||||
begin
|
||||
induction H with l H IH,
|
||||
{ exact e ⬝e* pequiv_ap (λH, B (nStabilize H G')) (is_prop.elim (le.refl k) H') },
|
||||
cases H' with l H'',
|
||||
{ exfalso, exact not_succ_le_self H },
|
||||
exact Stabilize_pequiv (IH H'')
|
||||
end
|
||||
|
||||
definition nStabilize_pequiv_of_eq (H : k ≤ l) (p : k = l) (G : [n;k]GType) :
|
||||
B (nStabilize H G) ≃* B G :=
|
||||
begin induction p, exact pequiv_ap (λH, B (nStabilize H G)) (is_prop.elim H (le.refl k)) end
|
||||
|
||||
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]GType) : [n;ω]GType :=
|
||||
ωGType.mk_le k (λl H', GType_equiv n l (nStabilize H' G))
|
||||
(λl H', (Forget_Stabilize (le.trans H H') (nStabilize H' G))⁻¹ᵉ*)
|
||||
(λl H', (Forget_Stabilize (le.trans H H') (nStabilize H' G))⁻¹ᵉ*)
|
||||
|
||||
definition ωStabilize_of_le_beta (H : k ≥ n + 2) (G : [n;k]GType) (H' : l ≥ k) :
|
||||
oB (ωStabilize_of_le H G) l ≃* GType_equiv n l (nStabilize H' G) :=
|
||||
ptruncconntype_eq_equiv _ _ !rec_down_le_beta_ge
|
||||
|
||||
definition ωStabilize_of_le_pequiv (H : k ≥ n + 2) (H' : k' ≥ n + 2) {G : [n;k]GType}
|
||||
{G' : [n;k']GType} (e : B G ≃* B G') (l : ℕ) (Hl : l ≥ k) (Hl' : l ≥ k') (p : k = k') :
|
||||
oB (ωStabilize_of_le H G) l ≃* oB (ωStabilize_of_le H' G') l :=
|
||||
begin
|
||||
refine ωStabilize_of_le_beta H G Hl ⬝e* _ ⬝e* (ωStabilize_of_le_beta H' G' Hl')⁻¹ᵉ*,
|
||||
induction p,
|
||||
exact nStabilize_pequiv _ _ e
|
||||
end
|
||||
|
||||
definition ωForget_ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]GType) :
|
||||
B (ωForget k (ωStabilize_of_le H G)) ≃* B G :=
|
||||
ωStabilize_of_le_beta H _ (le.refl k)
|
||||
|
||||
definition ωStabilize (G : [n;k]GType) : [n;ω]GType :=
|
||||
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
|
||||
|
||||
definition ωstabilization (H : k ≥ n + 2) : is_equiv (@ωStabilize n k) :=
|
||||
definition ωForget_ωStabilize (H : k ≥ n + 2) (G : [n;k]GType) :
|
||||
B (ωForget k (ωStabilize G)) ≃* B G :=
|
||||
begin
|
||||
refine _ ⬝e* ωForget_ωStabilize_of_le H G,
|
||||
esimp [ωForget, ωStabilize],
|
||||
have H' : max (n + 2) k = k, from max_eq_right H,
|
||||
exact ωStabilize_of_le_pequiv !le_max_left H (nStabilize_pequiv_of_eq _ H'⁻¹ _)
|
||||
k (le_of_eq H') (le.refl k) H'
|
||||
end
|
||||
|
||||
/-
|
||||
definition ωStabilize_adjoint_ωForget (G : [n;k]GType) (H : [n;ω]GType) :
|
||||
ωGType_hom (ωStabilize G) H ≃* ppmap (B G) (B (ωForget k H)) :=
|
||||
sorry
|
||||
|
||||
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
|
||||
definition ωStabilize_ωForget (G : [n;ω]GType) (l : ℕ) :
|
||||
oB (ωStabilize (ωForget k G)) l ≃* oB G l :=
|
||||
begin
|
||||
exact sorry
|
||||
end
|
||||
|
||||
definition GType_hom (G H : [n;k]GType) : Type :=
|
||||
B G →* B H
|
||||
definition ωstabilization (H : k ≥ n + 2) : is_equiv (@ωStabilize n k) :=
|
||||
begin
|
||||
apply adjointify _ (ωForget k),
|
||||
{ intro G', exact sorry },
|
||||
{ intro G, apply GType_eq, exact ωForget_ωStabilize H G }
|
||||
end
|
||||
-/
|
||||
|
||||
definition is_trunc_GType_hom (G H : [n;k]GType) : is_trunc n (GType_hom G H) :=
|
||||
is_trunc_pmap_of_is_conn _ (k.-2) _ (k + n) _ (le_of_eq (sub_one_add_plus_two_sub_one k n)⁻¹)
|
||||
|
@ -339,14 +409,11 @@ local attribute [instance] is_set_GType_hom
|
|||
|
||||
definition cGType [constructor] (k : ℕ) : Precategory :=
|
||||
pb_Precategory (cptruncconntype' (k.-1))
|
||||
(GType_equiv 0 k ⬝e equiv_ap (λx, x-Type*[k.-1]) (ap of_nat (zero_add k)) ⬝e
|
||||
(GType_equiv 0 k ⬝e ptruncconntype_equiv (ap of_nat (zero_add k)) idp ⬝e
|
||||
(ptruncconntype'_equiv_ptruncconntype (k.-1))⁻¹ᵉ)
|
||||
|
||||
example (k : ℕ) : Precategory.carrier (cGType k) = [0;k]GType := by reflexivity
|
||||
-- TODO
|
||||
-- example (k : ℕ) (G H : cGType k) : (G ⟶ H) = (B G →* B H) :=
|
||||
-- begin esimp [cGType] end
|
||||
--by induction G, induction H, reflexivity
|
||||
example (k : ℕ) (G H : cGType k) : (G ⟶ H) = (B G →* B H) := by reflexivity
|
||||
|
||||
definition cGType_equivalence_cType [constructor] (k : ℕ) : cGType k ≃c cType*[k.-1] :=
|
||||
!pb_Precategory_equivalence_of_equiv
|
||||
|
@ -361,12 +428,12 @@ equivalence.trans !pb_Precategory_equivalence_of_equiv
|
|||
(equivalence.trans (equivalence.symm (AbGrp_equivalence_cptruncconntype' k))
|
||||
proof equivalence.refl _ qed)
|
||||
|
||||
--has sorry
|
||||
print axioms ωstabilization
|
||||
|
||||
-- no sorry's
|
||||
print axioms GType_equiv
|
||||
print axioms InfGType_equiv
|
||||
print axioms Decat_adjoint_Disc
|
||||
print axioms Decat_adjoint_Disc_natural
|
||||
print axioms InfDecat_adjoint_InfDisc
|
||||
print axioms InfDecat_adjoint_InfDisc_natural
|
||||
print axioms Deloop_adjoint_Loop
|
||||
print axioms Deloop_adjoint_Loop_natural
|
||||
print axioms Stabilize_adjoint_Forget
|
||||
|
|
|
@ -391,10 +391,37 @@ namespace nat
|
|||
induction s with s IH: intro n,
|
||||
{ apply HQ0 },
|
||||
{ apply IH, intro n' H, induction H with n' H IH2,
|
||||
{ apply HQs },
|
||||
{ esimp, apply HQs },
|
||||
{ apply HQ0 }}
|
||||
end
|
||||
|
||||
definition rec_down_le_beta_ge (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n)
|
||||
(Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : s ≤ n) : rec_down_le P s H0 Hs n = H0 n Hn :=
|
||||
begin
|
||||
revert n Hn, induction s with s IH: intro n Hn,
|
||||
{ exact ap (H0 n) !is_prop.elim },
|
||||
{ have Hn' : s ≤ n, from le.trans !self_le_succ Hn,
|
||||
refine IH _ _ Hn' ⬝ _,
|
||||
induction Hn' with n Hn' IH',
|
||||
{ exfalso, exact not_succ_le_self Hn },
|
||||
{ exact ap (H0 (succ n)) !is_prop.elim }}
|
||||
end
|
||||
|
||||
definition rec_down_le_beta_lt (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n)
|
||||
(Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : n < s) :
|
||||
rec_down_le P s H0 Hs n = Hs n (rec_down_le P s H0 Hs (n+1)) :=
|
||||
begin
|
||||
revert n Hn, induction s with s IH: intro n Hn,
|
||||
{ exfalso, exact not_succ_le_zero n Hn },
|
||||
{ have Hn' : n ≤ s, from le_of_succ_le_succ Hn,
|
||||
--esimp [rec_down_le],
|
||||
exact sorry
|
||||
-- induction Hn' with s Hn IH,
|
||||
-- { },
|
||||
-- { }
|
||||
}
|
||||
end
|
||||
|
||||
/- this generalizes iterate_commute -/
|
||||
definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B}
|
||||
(h : A → B) (p : hsquare f g h h) (n : ℕ) : hsquare (f^[n]) (g^[n]) h h :=
|
||||
|
@ -1253,6 +1280,9 @@ namespace is_conn
|
|||
|
||||
open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops
|
||||
|
||||
definition is_conn_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_conn n A) : is_conn m A :=
|
||||
transport (λk, is_conn k A) p H
|
||||
|
||||
-- todo: make trunc_equiv_trunc_of_is_conn_fun a def.
|
||||
definition ptrunc_pequiv_ptrunc_of_is_conn_fun {A B : Type*} (n : ℕ₋₂) (f : A →* B)
|
||||
[H : is_conn_fun n f] : ptrunc n A ≃* ptrunc n B :=
|
||||
|
@ -1325,6 +1355,15 @@ pconntype_eq_equiv X Y
|
|||
definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (e : X ≃* Y) : X = Y :=
|
||||
(ptruncconntype_eq_equiv X Y)⁻¹ᵉ e
|
||||
|
||||
definition ptruncconntype_functor [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k')
|
||||
(X : n-Type*[k]) : n'-Type*[k'] :=
|
||||
ptruncconntype.mk X (is_trunc_of_eq p _) pt (is_conn_of_eq q _)
|
||||
|
||||
definition ptruncconntype_equiv [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k') :
|
||||
n-Type*[k] ≃ n'-Type*[k'] :=
|
||||
equiv.MK (ptruncconntype_functor p q) (ptruncconntype_functor p⁻¹ q⁻¹)
|
||||
(λX, ptruncconntype_eq pequiv.rfl) (λX, ptruncconntype_eq pequiv.rfl)
|
||||
|
||||
-- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ℕ) {A B : pType.{u}} (f : A →* B)
|
||||
-- [H : is_conn 0 A]
|
||||
-- (H1 : Πk, k ≤ n → is_equiv (π→[k] f))
|
||||
|
|
Loading…
Reference in a new issue