completed definition of k prime
This commit is contained in:
parent
a1e01456f1
commit
313754ee2b
2 changed files with 77 additions and 4 deletions
|
@ -11,6 +11,18 @@ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .q
|
||||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
|
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
|
||||||
equiv is_equiv
|
equiv is_equiv
|
||||||
|
|
||||||
|
-- This definition needs to be moved to exactness.hlean. However we had trouble doing so. Please help.
|
||||||
|
definition iso_ker_im_of_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) (E : is_exact f g) : ab_kernel g ≃g ab_image f :=
|
||||||
|
begin
|
||||||
|
fapply ab_subgroup_iso,
|
||||||
|
intro a,
|
||||||
|
induction E,
|
||||||
|
exact ker_in_im a,
|
||||||
|
intro a b, induction b with q, induction q with b p, induction p,
|
||||||
|
induction E,
|
||||||
|
exact im_in_ker b,
|
||||||
|
end
|
||||||
|
|
||||||
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
|
||||||
|
|
||||||
definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) :=
|
definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) :=
|
||||||
|
@ -214,10 +226,57 @@ definition derived_couple_j_htpy : group_fun (derived_couple_j ∘g SES.g SES_of
|
||||||
exact pr2 (center' (derived_couple_j_unique)),
|
exact pr2 (center' (derived_couple_j_unique)),
|
||||||
end
|
end
|
||||||
|
|
||||||
/-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
|
definition SES_im_i_trivial : SES trivial_ab_group derived_couple_A derived_couple_A :=
|
||||||
begin
|
begin
|
||||||
exact sorry,
|
fapply SES_of_isomorphism_right,
|
||||||
-- refine (comm_gq_map (comm_kernel (boundary CC)) (image_subgroup_of_bd (boundary CC) (boundary_is_boundary CC))) ∘g _,
|
fapply isomorphism.refl,
|
||||||
end-/
|
end
|
||||||
|
|
||||||
|
definition subgroup_iso_exact_kerj_imi : ab_kernel j ≃g ab_image i :=
|
||||||
|
begin
|
||||||
|
fapply iso_ker_im_of_exact,
|
||||||
|
induction EC,
|
||||||
|
exact exact_ij,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition k_restrict_aux : ab_kernel d →g ab_kernel j :=
|
||||||
|
begin
|
||||||
|
fapply ab_hom_lift_kernel,
|
||||||
|
exact k ∘g ab_kernel_incl d,
|
||||||
|
intro p, induction p with b p, exact p,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition k_restrict : ab_kernel d →g derived_couple_A :=
|
||||||
|
subgroup_iso_exact_kerj_imi ∘g k_restrict_aux
|
||||||
|
|
||||||
|
definition k_restrict_square_left : k_restrict ∘g (SES.f (SES_of_differential d H)) ~ λ x, 1 :=
|
||||||
|
begin
|
||||||
|
intro x,
|
||||||
|
induction x with b' p,
|
||||||
|
induction p with q,
|
||||||
|
induction q with b p,
|
||||||
|
induction p,
|
||||||
|
fapply subtype_eq,
|
||||||
|
induction EC,
|
||||||
|
induction exact_jk,
|
||||||
|
fapply im_in_ker,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition derived_couple_k_unique : is_contr
|
||||||
|
(Σ hC, group_fun (hC ∘g SES.g (SES_of_differential d H)) ~ group_fun
|
||||||
|
(SES.g SES_im_i_trivial ∘g k_restrict))
|
||||||
|
:=
|
||||||
|
quotient_extend_unique_SES (SES_of_differential d H) (SES_im_i_trivial) (trivial_homomorphism (ab_image d) trivial_ab_group) (k_restrict) (k_restrict_square_left)
|
||||||
|
|
||||||
|
definition derived_couple_k : derived_couple_B →g derived_couple_A :=
|
||||||
|
begin
|
||||||
|
exact pr1 (center' (derived_couple_k_unique)),
|
||||||
|
end
|
||||||
|
|
||||||
|
definition derived_couple_k_htpy : group_fun (derived_couple_k ∘g SES.g (SES_of_differential d H)) ~ group_fun
|
||||||
|
(SES.g (SES_im_i_trivial) ∘g k_restrict) :=
|
||||||
|
begin
|
||||||
|
exact pr2 (center' (derived_couple_k_unique)),
|
||||||
|
end
|
||||||
|
|
||||||
end derived_couple
|
end derived_couple
|
||||||
|
|
|
@ -332,6 +332,20 @@ f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
|
||||||
reflexivity
|
reflexivity
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition ab_hom_lift_kernel [constructor] {A B C : AbGroup} (f : A →g B) (g : B →g C) (Hyp : Π (a : A), g (f a) = 1) : A →g ab_kernel g :=
|
||||||
|
begin
|
||||||
|
fapply ab_hom_lift,
|
||||||
|
exact f,
|
||||||
|
intro a,
|
||||||
|
exact Hyp a,
|
||||||
|
end
|
||||||
|
|
||||||
|
definition ab_hom_lift_kernel_factors {A B C : AbGroup} (f : A →g B) (g : B →g C) (Hyp : Π (a : A), g (f a) = 1) :
|
||||||
|
f = ab_kernel_incl g ∘g ab_hom_lift_kernel f g Hyp :=
|
||||||
|
begin
|
||||||
|
fapply ab_hom_factors_through_lift,
|
||||||
|
end
|
||||||
|
|
||||||
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g image f :=
|
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g image f :=
|
||||||
begin
|
begin
|
||||||
fapply hom_lift f,
|
fapply hom_lift f,
|
||||||
|
|
Loading…
Add table
Reference in a new issue