make pointed suspension and spheres the default

There is one proof in realprojective which I couldn't quite fix, so for now I left a sorry
This commit is contained in:
Floris van Doorn 2017-07-20 18:01:22 +01:00
parent a5c80f79c6
commit 3367c20f9d
23 changed files with 360 additions and 333 deletions

View file

@ -22,3 +22,13 @@ Some of these things still need to be changes, some of them are already changed,
- Type class inference for equivalences doesn't really work in Lean, since it recognizes that `f ∘ id` is definitionally `f`, hence it can always apply `is_equiv_compose` and get trapped in a loop.
- Coercions should all be defined *immediately* after defining a structure, *before* declaring any
instances. This is because the coercion graph is updated after each declared coercion.
- When you have a functor in two arguments (`→`, `×`, `Π`, `Σ`, pointed versions of these, `=`, `∧`,
``, and so on), the functoriality should be stated in both arguments at once, and the special
cases where only one argument changes should be a special case of that one. This makes it easier
to prove properties about the functorial action, because you only have to do work once (although
that work is sometimes twice as much, but sometimes much less). We haven't always done this,
because it's sometimes easier to define a special case first (even though later you probably still
have to define the general case). Note that for `=` this gives square filling as primitive,
instead of concatenation (which can be seen as functoriality in the second argument), and Dan
Licata argued for that as primitive instead of concatenation. On the other hand, the definition
of the more general functor might be more complicated, in which case definitional reduction won't be as nice

View file

@ -58,8 +58,8 @@ namespace group
refine !con.assoc ⬝ whisker_left _ _, apply ap1_gen_con_idp }
end
definition loop_psusp_intro_pmap_mul {X Y : Type*} (f g : psusp X →* Ω Y) :
loop_psusp_intro (pmap_mul f g) ~* pmap_mul (loop_psusp_intro f) (loop_psusp_intro g) :=
definition loop_susp_intro_pmap_mul {X Y : Type*} (f g : susp X →* Ω Y) :
loop_susp_intro (pmap_mul f g) ~* pmap_mul (loop_susp_intro f) (loop_susp_intro g) :=
pwhisker_right _ !ap1_pmap_mul ⬝* !pmap_mul_pcompose
definition inf_group_pmap [constructor] [instance] (A B : Type*) : inf_group (A →* Ω B) :=

View file

@ -74,28 +74,28 @@ section prod
definition wpr2 (A B : Type*) : (A B) →* B :=
pmap.mk (wedge.elim (pconst A B) (pid B) idp) idp
definition ppr1_pprod_of_pwedge (A B : Type*)
: ppr1 ∘* pprod_of_pwedge A B ~* wpr1 A B :=
definition ppr1_pprod_of_wedge (A B : Type*)
: ppr1 ∘* pprod_of_wedge A B ~* wpr1 A B :=
begin
fconstructor,
{ intro w, induction w with a b,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
apply trans (ap_compose ppr1 (pprod_of_pwedge A B) (pushout.glue star)),
apply trans (ap_compose ppr1 (pprod_of_wedge A B) (pushout.glue star)),
krewrite pushout.elim_glue, krewrite pushout.elim_glue } },
{ reflexivity }
end
definition ppr2_pprod_of_pwedge (A B : Type*)
: ppr2 ∘* pprod_of_pwedge A B ~* wpr2 A B :=
definition ppr2_pprod_of_wedge (A B : Type*)
: ppr2 ∘* pprod_of_wedge A B ~* wpr2 A B :=
begin
fconstructor,
{ intro w, induction w with a b,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
apply trans (ap_compose ppr2 (pprod_of_pwedge A B) (pushout.glue star)),
apply trans (ap_compose ppr2 (pprod_of_wedge A B) (pushout.glue star)),
krewrite pushout.elim_glue, krewrite pushout.elim_glue } },
{ reflexivity }
end
@ -103,7 +103,7 @@ section prod
end prod
structure co_h_space [class] (A : Type*) :=
(comul : A →* (A A))
(colaw : pprod_of_pwedge A A ∘* comul ~* pdiag A)
(colaw : pprod_of_wedge A A ∘* comul ~* pdiag A)
open co_h_space
@ -113,18 +113,18 @@ definition co_h_space_of_counit_laws {A : Type*}
: co_h_space A :=
co_h_space.mk c (pair_phomotopy
(calc
ppr1 ∘* pprod_of_pwedge A A ∘* c
~* (ppr1 ∘* pprod_of_pwedge A A) ∘* c
: (passoc ppr1 (pprod_of_pwedge A A) c)⁻¹*
ppr1 ∘* pprod_of_wedge A A ∘* c
~* (ppr1 ∘* pprod_of_wedge A A) ∘* c
: (passoc ppr1 (pprod_of_wedge A A) c)⁻¹*
... ~* wpr1 A A ∘* c
: pwhisker_right c (ppr1_pprod_of_pwedge A A)
: pwhisker_right c (ppr1_pprod_of_wedge A A)
... ~* pid A : l)
(calc
ppr2 ∘* pprod_of_pwedge A A ∘* c
~* (ppr2 ∘* pprod_of_pwedge A A) ∘* c
: (passoc ppr2 (pprod_of_pwedge A A) c)⁻¹*
ppr2 ∘* pprod_of_wedge A A ∘* c
~* (ppr2 ∘* pprod_of_wedge A A) ∘* c
: (passoc ppr2 (pprod_of_wedge A A) c)⁻¹*
... ~* wpr2 A A ∘* c
: pwhisker_right c (ppr2_pprod_of_pwedge A A)
: pwhisker_right c (ppr2_pprod_of_wedge A A)
... ~* pid A : r))
section
@ -134,20 +134,20 @@ section
definition counit_left : wpr1 A A ∘* comul A ~* pid A :=
calc
wpr1 A A ∘* comul A
~* (ppr1 ∘* (pprod_of_pwedge A A)) ∘* comul A
: (pwhisker_right (comul A) (ppr1_pprod_of_pwedge A A))⁻¹*
... ~* ppr1 ∘* ((pprod_of_pwedge A A) ∘* comul A)
: passoc ppr1 (pprod_of_pwedge A A) (comul A)
~* (ppr1 ∘* (pprod_of_wedge A A)) ∘* comul A
: (pwhisker_right (comul A) (ppr1_pprod_of_wedge A A))⁻¹*
... ~* ppr1 ∘* ((pprod_of_wedge A A) ∘* comul A)
: passoc ppr1 (pprod_of_wedge A A) (comul A)
... ~* pid A
: pwhisker_left ppr1 (colaw A)
definition counit_right : wpr2 A A ∘* comul A ~* pid A :=
calc
wpr2 A A ∘* comul A
~* (ppr2 ∘* (pprod_of_pwedge A A)) ∘* comul A
: (pwhisker_right (comul A) (ppr2_pprod_of_pwedge A A))⁻¹*
... ~* ppr2 ∘* ((pprod_of_pwedge A A) ∘* comul A)
: passoc ppr2 (pprod_of_pwedge A A) (comul A)
~* (ppr2 ∘* (pprod_of_wedge A A)) ∘* comul A
: (pwhisker_right (comul A) (ppr2_pprod_of_wedge A A))⁻¹*
... ~* ppr2 ∘* ((pprod_of_wedge A A) ∘* comul A)
: passoc ppr2 (pprod_of_wedge A A) (comul A)
... ~* pid A
: pwhisker_left ppr2 (colaw A)
@ -169,7 +169,7 @@ end
section
variable (A : Type*)
definition pinch : ⅀ A →* pwedge (⅀ A) (⅀ A) :=
definition pinch : ⅀ A →* wedge (⅀ A) (⅀ A) :=
begin
fapply pmap.mk,
{ intro sa, induction sa with a,
@ -178,7 +178,7 @@ section
{ reflexivity }
end
definition co_h_space_psusp : co_h_space (⅀ A) :=
definition co_h_space_susp : co_h_space (⅀ A) :=
co_h_space_of_counit_laws (pinch A)
begin
fapply phomotopy.mk,

View file

@ -91,7 +91,7 @@ exit
open susp
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
definition susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : susp A :=
begin
induction x using smash.elim,
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
@ -102,7 +102,7 @@ exit
exact !elim_loop ⬝ !con.right_inv }
end
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
definition smash_pcircle_of_susp [unfold 2] (x : susp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
@ -111,13 +111,13 @@ exit
end
-- the definitions below compile, but take a long time to do so and have sorry's in them
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
definition smash_pcircle_of_susp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_susp (susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap_compose smash_pcircle_of_susp _ _ ⬝ph _,
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
-- make everything below this a lemma defined by path induction?
@ -136,10 +136,10 @@ exit
end end }
end
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
-- definition smash_pcircle_of_susp_of_smash_pcircle_gluer_base (b : S¹*)
-- : square (smash_pcircle_of_susp_of_smash_pcircle_pt (Point A) b)
-- (gluer pt)
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
-- (ap smash_pcircle_of_susp (ap (λ a, susp_of_smash_pcircle a) (gluer b)))
-- (gluer b) :=
-- begin
-- refine ap02 _ !elim_gluer ⬝ph _,
@ -149,36 +149,36 @@ exit
-- end
exit
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* susp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact psusp_of_smash_pcircle },
{ exact smash_pcircle_of_psusp },
{ exact susp_of_smash_pcircle },
{ exact smash_pcircle_of_susp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ exact merid pt },
{ apply eq_pathover_id_right,
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
refine ap_compose susp_of_smash_pcircle _ _ ⬝ph _,
refine ap02 _ !elim_merid ⬝ph _,
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
rotate 5, do 2 (unfold [susp_of_smash_pcircle]; apply elim_gluel),
esimp, apply elim_loop, do 2 (unfold [susp_of_smash_pcircle]; apply elim_gluel),
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
{ intro x, induction x using smash.rec,
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
{ exact smash_pcircle_of_susp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap_compose smash_pcircle_of_susp _ _ ⬝ph _,
unfold [susp_of_smash_pcircle],
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap_compose smash_pcircle_of_susp _ _ ⬝ph _,
unfold [susp_of_smash_pcircle],
refine ap02 _ !elim_gluer ⬝ph _,
induction b,
{ apply square_of_eq, exact whisker_right _ !con.right_inv },

View file

@ -180,49 +180,49 @@ parametrized_cohomology_isomorphism_right
/- suspension axiom -/
definition cohomology_psusp_2 (Y : spectrum) (n : ) :
definition cohomology_susp_2 (Y : spectrum) (n : ) :
Ω (Ω[2] (Y ((n+1)+2))) ≃* Ω[2] (Y (n+2)) :=
begin
apply loopn_pequiv_loopn 2,
exact loop_pequiv_loop (pequiv_of_eq (ap Y (add.right_comm n 1 2))) ⬝e* !equiv_glue⁻¹ᵉ*
end
definition cohomology_psusp_1 (X : Type*) (Y : spectrum) (n : ) :
psusp X →* Ω (Ω (Y (n + 1 + 2))) ≃ X →* Ω (Ω (Y (n+2))) :=
definition cohomology_susp_1 (X : Type*) (Y : spectrum) (n : ) :
susp X →* Ω (Ω (Y (n + 1 + 2))) ≃ X →* Ω (Ω (Y (n+2))) :=
calc
psusp X →* Ω[2] (Y (n + 1 + 2)) ≃ X →* Ω (Ω[2] (Y (n + 1 + 2))) : psusp_adjoint_loop_unpointed
susp X →* Ω[2] (Y (n + 1 + 2)) ≃ X →* Ω (Ω[2] (Y (n + 1 + 2))) : susp_adjoint_loop_unpointed
... ≃ X →* Ω[2] (Y (n+2)) : equiv_of_pequiv (pequiv_ppcompose_left
(cohomology_psusp_2 Y n))
(cohomology_susp_2 Y n))
definition cohomology_psusp_1_pmap_mul {X : Type*} {Y : spectrum} {n : }
(f g : psusp X →* Ω (Ω (Y (n + 1 + 2)))) : cohomology_psusp_1 X Y n (pmap_mul f g) ~*
pmap_mul (cohomology_psusp_1 X Y n f) (cohomology_psusp_1 X Y n g) :=
definition cohomology_susp_1_pmap_mul {X : Type*} {Y : spectrum} {n : }
(f g : susp X →* Ω (Ω (Y (n + 1 + 2)))) : cohomology_susp_1 X Y n (pmap_mul f g) ~*
pmap_mul (cohomology_susp_1 X Y n f) (cohomology_susp_1 X Y n g) :=
begin
unfold [cohomology_psusp_1],
refine pwhisker_left _ !loop_psusp_intro_pmap_mul ⬝* _,
unfold [cohomology_susp_1],
refine pwhisker_left _ !loop_susp_intro_pmap_mul ⬝* _,
apply pcompose_pmap_mul
end
definition cohomology_psusp_equiv (X : Type*) (Y : spectrum) (n : ) :
H^n+1[psusp X, Y] ≃ H^n[X, Y] :=
trunc_equiv_trunc _ (cohomology_psusp_1 X Y n)
definition cohomology_susp_equiv (X : Type*) (Y : spectrum) (n : ) :
H^n+1[susp X, Y] ≃ H^n[X, Y] :=
trunc_equiv_trunc _ (cohomology_susp_1 X Y n)
definition cohomology_psusp (X : Type*) (Y : spectrum) (n : ) :
H^n+1[psusp X, Y] ≃g H^n[X, Y] :=
isomorphism_of_equiv (cohomology_psusp_equiv X Y n)
definition cohomology_susp (X : Type*) (Y : spectrum) (n : ) :
H^n+1[susp X, Y] ≃g H^n[X, Y] :=
isomorphism_of_equiv (cohomology_susp_equiv X Y n)
begin
intro f₁ f₂, induction f₁ with f₁, induction f₂ with f₂,
apply ap tr, apply eq_of_phomotopy, exact cohomology_psusp_1_pmap_mul f₁ f₂
apply ap tr, apply eq_of_phomotopy, exact cohomology_susp_1_pmap_mul f₁ f₂
end
definition cohomology_psusp_natural {X X' : Type*} (f : X →* X') (Y : spectrum) (n : ) :
cohomology_psusp X Y n ∘ cohomology_functor (psusp_functor f) Y (n+1) ~
cohomology_functor f Y n ∘ cohomology_psusp X' Y n :=
definition cohomology_susp_natural {X X' : Type*} (f : X →* X') (Y : spectrum) (n : ) :
cohomology_susp X Y n ∘ cohomology_functor (susp_functor f) Y (n+1) ~
cohomology_functor f Y n ∘ cohomology_susp X' Y n :=
begin
refine (trunc_functor_compose _ _ _)⁻¹ʰᵗʸ ⬝hty _ ⬝hty trunc_functor_compose _ _ _,
apply trunc_functor_homotopy, intro g,
apply eq_of_phomotopy, refine _ ⬝* !passoc⁻¹*, apply pwhisker_left,
apply loop_psusp_intro_natural
apply loop_susp_intro_natural
end
/- exactness -/
@ -284,9 +284,9 @@ structure cohomology_theory.{u} : Type.{u+1} :=
(Hid : Π(n : ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
(Hcompose : Π(n : ) {X Y Z : Type*} (g : Y →* Z) (f : X →* Y) (z : HH n Z),
Hh n (g ∘* f) z = Hh n f (Hh n g z))
(Hsusp : Π(n : ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
(Hsusp : Π(n : ) (X : Type*), HH (succ n) (susp X) ≃g HH n X)
(Hsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hsusp n X ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n Y)
Hsusp n X ∘ Hh (succ n) (susp_functor f) ~ Hh n f ∘ Hsusp n Y)
(Hexact : Π(n : ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n (pcod f)) (Hh n f))
(Hadditive : Π(n : ) {I : Type.{u}} (X : I → Type*), has_choice 0 I →
is_equiv (Group_pi_intro (λi, Hh n (pinl i)) : HH n ( X) → Πᵍ i, HH n (X i)))
@ -301,19 +301,19 @@ open cohomology_theory
definition Hequiv (H : cohomology_theory) (n : ) {X Y : Type*} (f : X ≃* Y) : H n Y ≃ H n X :=
equiv_of_isomorphism (Hiso H n f)
definition Hsusp_neg (H : cohomology_theory) (n : ) (X : Type*) : H n (psusp X) ≃g H (pred n) X :=
definition Hsusp_neg (H : cohomology_theory) (n : ) (X : Type*) : H n (susp X) ≃g H (pred n) X :=
isomorphism_of_eq (ap (λn, H n _) proof (sub_add_cancel n 1)⁻¹ qed) ⬝g cohomology_theory.Hsusp H (pred n) X
definition Hsusp_neg_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
Hsusp_neg H n X ∘ H ^→ n (psusp_functor f) ~ H ^→ (pred n) f ∘ Hsusp_neg H n Y :=
Hsusp_neg H n X ∘ H ^→ n (susp_functor f) ~ H ^→ (pred n) f ∘ Hsusp_neg H n Y :=
sorry
definition Hsusp_inv_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
H ^→ (succ n) (psusp_functor f) ∘g (Hsusp H n Y)⁻¹ᵍ ~ (Hsusp H n X)⁻¹ᵍ ∘ H ^→ n f :=
H ^→ (succ n) (susp_functor f) ∘g (Hsusp H n Y)⁻¹ᵍ ~ (Hsusp H n X)⁻¹ᵍ ∘ H ^→ n f :=
sorry
definition Hsusp_neg_inv_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
H ^→ n (psusp_functor f) ∘g (Hsusp_neg H n Y)⁻¹ᵍ ~ (Hsusp_neg H n X)⁻¹ᵍ ∘ H ^→ (pred n) f :=
H ^→ n (susp_functor f) ∘g (Hsusp_neg H n Y)⁻¹ᵍ ~ (Hsusp_neg H n X)⁻¹ᵍ ∘ H ^→ (pred n) f :=
sorry
definition Hadditive_equiv (H : cohomology_theory) (n : ) {I : Type} (X : I → Type*) (H2 : has_choice 0 I)
@ -346,7 +346,7 @@ end
-- definition Hwedge (H : cohomology_theory) (n : ) (A B : Type*) : H n (A B) ≃g H n A ×ag H n B :=
-- begin
-- refine Hiso H n (pwedge_pequiv_fwedge A B)⁻¹ᵉ* ⬝g _,
-- refine Hiso H n (wedge_pequiv_fwedge A B)⁻¹ᵉ* ⬝g _,
-- refine Hadditive_equiv H n _ _ ⬝g _
-- end
@ -360,8 +360,8 @@ cohomology_theory.mk
(λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
(λn A x, cohomology_functor_pid A Y n x)
(λn A B C g f x, cohomology_functor_pcompose g f Y n x)
(λn A, cohomology_psusp A Y n)
(λn A B f, cohomology_psusp_natural f Y n)
(λn A, cohomology_susp A Y n)
(λn A B f, cohomology_susp_natural f Y n)
(λn A B f, cohomology_exact f Y n)
(λn I A H, spectrum_additive H A Y n)

View file

@ -20,15 +20,15 @@ namespace homology
(Hpid : Π(n : ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
(Hpcompose : Π(n : ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
(Hpsusp : Π(n : ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
(Hpsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X)
(Hsusp : Π(n : ) (X : Type*), HH (succ n) (susp X) ≃g HH n X)
(Hsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hsusp n Y ∘ Hh (succ n) (susp_functor f) ~ Hh n f ∘ Hsusp n X)
(Hexact : Π(n : ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
(Hadditive : Π(n : ) {I : Set.{u}} (X : I → Type*), is_equiv
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n ( X)))
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift (sphere 0))))
section
universe variable u
@ -37,20 +37,20 @@ namespace homology
theorem HH_base_indep (n : ) {A : Type} (a b : A)
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ
... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b)
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (susp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ
... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b)
theorem Hh_homotopy' (n : ) {A B : Type*} (f : A → B) (p q : f pt = pt)
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
calc Hh theory n (pmap.mk f p) x
= Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x))
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹
... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x))
: by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹
... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x))
: by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x)
= Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x))
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)⁻¹
... = Hsusp theory n B (Hh theory (succ n) (pmap.mk (susp_functor' f) !refl) ((Hsusp theory n A)⁻¹ x))
: by exact (Hsusp_natural theory n (pmap.mk f p) ((Hsusp theory n A)⁻¹ᵍ x))⁻¹
... = Hh theory n (pmap.mk f q) (Hsusp theory n A ((Hsusp theory n A)⁻¹ x))
: by exact Hsusp_natural theory n (pmap.mk f q) ((Hsusp theory n A)⁻¹ x)
... = Hh theory n (pmap.mk f q) x
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)
theorem Hh_homotopy (n : ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
calc Hh theory n f x
@ -122,8 +122,8 @@ namespace homology
definition Hfwedge (n : ) {I : Type} [is_set I] (X : I → Type*): HH theory n ( X) ≃g dirsum (λi, HH theory n (X i)) :=
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
definition Hpwedge (n : ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
calc HH theory n (A B) ≃g HH theory n ( (bool.rec A B)) : by exact HH_isomorphism n (pwedge_pequiv_fwedge A B)
definition Hwedge (n : ) (A B : Type*) : HH theory n (wedge A B) ≃g HH theory n A ×g HH theory n B :=
calc HH theory n (A B) ≃g HH theory n ( (bool.rec A B)) : by exact HH_isomorphism n (wedge_pequiv_fwedge A B)
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact (Hadditive'_equiv n (bool.rec A B))⁻¹ᵍ
... ≃g dirsum (bool.rec (HH theory n A) (HH theory n B)) : by exact dirsum_isomorphism (bool.rec !isomorphism.refl !isomorphism.refl)
... ≃g HH theory n A ×g HH theory n B : by exact binary_dirsum (HH theory n A) (HH theory n B)
@ -134,13 +134,13 @@ namespace homology
parameter (theory : homology_theory.{max u v})
open homology_theory
definition Hplift_psusp (n : ) (A : Type*): HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory n (plift.{u v} A) :=
calc HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory (n + 1) (psusp (plift.{u v} A)) : by exact HH_isomorphism theory (n + 1) (plift_psusp _)
... ≃g HH theory n (plift.{u v} A) : by exact Hpsusp theory n (plift.{u v} A)
definition Hplift_susp (n : ) (A : Type*): HH theory (n + 1) (plift.{u v} (susp A)) ≃g HH theory n (plift.{u v} A) :=
calc HH theory (n + 1) (plift.{u v} (susp A)) ≃g HH theory (n + 1) (susp (plift.{u v} A)) : by exact HH_isomorphism theory (n + 1) (plift_susp _)
... ≃g HH theory n (plift.{u v} A) : by exact Hsusp theory n (plift.{u v} A)
definition Hplift_pwedge (n : ) (A B : Type*): HH theory n (plift.{u v} (A B)) ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) :=
calc HH theory n (plift.{u v} (A B)) ≃g HH theory n (plift.{u v} A plift.{u v} B) : by exact HH_isomorphism theory n (plift_pwedge A B)
... ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) : by exact Hpwedge theory n (plift.{u v} A) (plift.{u v} B)
definition Hplift_wedge (n : ) (A B : Type*): HH theory n (plift.{u v} (A B)) ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) :=
calc HH theory n (plift.{u v} (A B)) ≃g HH theory n (plift.{u v} A plift.{u v} B) : by exact HH_isomorphism theory n (plift_wedge A B)
... ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) : by exact Hwedge theory n (plift.{u v} A) (plift.{u v} B)
definition Hplift_isomorphism (n : ) {A B : Type*} (e : A ≃* B) : HH theory n (plift.{u v} A) ≃g HH theory n (plift.{u v} B) :=
HH_isomorphism theory n (!pequiv_plift⁻¹ᵉ* ⬝e* e ⬝e* !pequiv_plift)
@ -175,9 +175,10 @@ definition homology_functor [constructor] {X Y : Type*} {E F : prespectrum} (f :
(g : E →ₛ F) (n : ) : homology X E n →g homology Y F n :=
pshomotopy_group_fun n (smash_prespectrum_fun f g)
print is_exact_g
print is_exact
definition homology_theory_spectrum_is_exact.{u} (E : spectrum.{u}) (n : ) {X Y : Type*} (f : X →* Y) :
is_exact_g (homology_functor f (sid (gen_spectrum.to_prespectrum E)) n)
(homology_functor (pcod f) (sid (gen_spectrum.to_prespectrum E)) n) :=
is_exact_g (homology_functor f (sid E) n) (homology_functor (pcod f) (sid E) n) :=
begin
esimp [is_exact_g],
-- fconstructor,
@ -211,8 +212,8 @@ begin
-- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
-- (λn A x, cohomology_functor_pid A Y n x)
-- (λn A B C g f x, cohomology_functor_pcompose g f Y n x)
-- (λn A, cohomology_psusp A Y n)
-- (λn A B f, cohomology_psusp_natural f Y n)
-- (λn A, cohomology_susp A Y n)
-- (λn A B f, cohomology_susp_natural f Y n)
-- (λn A B f, cohomology_exact f Y n)
-- (λn I A H, spectrum_additive H A Y n)
end

View file

@ -17,18 +17,18 @@ section
open homology_theory
theorem Hpsphere : Π(n : )(m : ), HH theory n (plift (psphere m)) ≃g HH theory (n - m) (plift (psphere 0)) :=
theorem Hsphere : Π(n : )(m : ), HH theory n (plift (sphere m)) ≃g HH theory (n - m) (plift (sphere 0)) :=
begin
intros n m, revert n, induction m with m,
{ exact λ n, isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_zero n)⁻¹ },
{ exact λ n, isomorphism_ap (λ n, HH theory n (plift (sphere 0))) (sub_zero n)⁻¹ },
{ intro n, exact calc
HH theory n (plift (psusp (psphere m)))
≃g HH theory (succ (pred n)) (plift (psusp (psphere m)))
: by exact isomorphism_ap (λ n, HH theory n (plift (psusp (psphere m)))) (succ_pred n)⁻¹
... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hplift_psusp theory (pred n) (psphere m)
... ≃g HH theory (pred n - m) (plift (psphere 0)) : by exact v_0 (pred n)
... ≃g HH theory (n - succ m) (plift (psphere 0))
: by exact isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_sub n 1 m ⬝ ap (λ m, n - m) (add.comm 1 m))
HH theory n (plift (susp (sphere m)))
≃g HH theory (succ (pred n)) (plift (susp (sphere m)))
: by exact isomorphism_ap (λ n, HH theory n (plift (susp (sphere m)))) (succ_pred n)⁻¹
... ≃g HH theory (pred n) (plift (sphere m)) : by exact Hplift_susp theory (pred n) (sphere m)
... ≃g HH theory (pred n - m) (plift (sphere 0)) : by exact v_0 (pred n)
... ≃g HH theory (n - succ m) (plift (sphere 0))
: by exact isomorphism_ap (λ n, HH theory n (plift (sphere 0))) (sub_sub n 1 m ⬝ ap (λ m, n - m) (add.comm 1 m))
}
end
end

View file

@ -17,23 +17,23 @@ section
open ordinary_homology_theory
theorem Hptorus : Π(n : )(m : ), HH theory n (plift (psphere m ×* psphere m)) ≃g
HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))) := λ n m,
calc HH theory n (plift (psphere m ×* psphere m))
≃g HH theory (n + 1) (plift (⅀ (psphere m ×* psphere m))) : by exact (Hplift_psusp theory n (psphere m ×* psphere m))⁻¹ᵍ
... ≃g HH theory (n + 1) (plift (⅀ (psphere m) (⅀ (psphere m) ⅀ (psphere m ∧ psphere m))))
: by exact Hplift_isomorphism theory (n + 1) (susp_product (psphere m) (psphere m))
... ≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m) (⅀ (psphere m ∧ psphere m))))
: by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m) (⅀ (psphere m ∧ psphere m)))
... ≃g HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m))))
: by exact product_isomorphism (Hplift_psusp theory n (psphere m))
theorem Hptorus : Π(n : )(m : ), HH theory n (plift (sphere m ×* sphere m)) ≃g
HH theory n (plift (sphere m)) ×g (HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m)))) := λ n m,
calc HH theory n (plift (sphere m ×* sphere m))
≃g HH theory (n + 1) (plift (⅀ (sphere m ×* sphere m))) : by exact (Hplift_susp theory n (sphere m ×* sphere m))⁻¹ᵍ
... ≃g HH theory (n + 1) (plift (⅀ (sphere m) (⅀ (sphere m) ⅀ (sphere m ∧ sphere m))))
: by exact Hplift_isomorphism theory (n + 1) (susp_product (sphere m) (sphere m))
... ≃g HH theory (n + 1) (plift (⅀ (sphere m))) ×g HH theory (n + 1) (plift (⅀ (sphere m) (⅀ (sphere m ∧ sphere m))))
: by exact Hplift_wedge theory (n + 1) (⅀ (sphere m)) (⅀ (sphere m) (⅀ (sphere m ∧ sphere m)))
... ≃g HH theory n (plift (sphere m)) ×g (HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m))))
: by exact product_isomorphism (Hplift_susp theory n (sphere m))
(calc
HH theory (n + 1) (plift (⅀ (psphere m) (⅀ (psphere m ∧ psphere m))))
≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m ∧ psphere m)))
: by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m ∧ psphere m))
... ≃g HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))
: by exact product_isomorphism (Hplift_psusp theory n (psphere m))
(Hplift_psusp theory n (psphere m ∧ psphere m) ⬝g Hplift_isomorphism theory n (sphere_smash_sphere m m)))
HH theory (n + 1) (plift (⅀ (sphere m) (⅀ (sphere m ∧ sphere m))))
≃g HH theory (n + 1) (plift (⅀ (sphere m))) ×g HH theory (n + 1) (plift (⅀ (sphere m ∧ sphere m)))
: by exact Hplift_wedge theory (n + 1) (⅀ (sphere m)) (⅀ (sphere m ∧ sphere m))
... ≃g HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m)))
: by exact product_isomorphism (Hplift_susp theory n (sphere m))
(Hplift_susp theory n (sphere m ∧ sphere m) ⬝g Hplift_isomorphism theory n (sphere_smash_sphere m m)))
end

View file

@ -1,7 +1,7 @@
-- Authors: Floris van Doorn
import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed
..move_to_lib .susp
..move_to_lib .susp ..algebra.quotient_group
open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn
@ -10,7 +10,7 @@ open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp func
namespace EM
definition EMadd1_functor_succ [unfold_full] {G H : AbGroup} (φ : G →g H) (n : ) :
EMadd1_functor φ (succ n) ~* ptrunc_functor (n+2) (psusp_functor (EMadd1_functor φ n)) :=
EMadd1_functor φ (succ n) ~* ptrunc_functor (n+2) (susp_functor (EMadd1_functor φ n)) :=
by reflexivity
definition EM1_functor_gid (G : Group) : EM1_functor (gid G) ~* !pid :=
@ -28,7 +28,7 @@ namespace EM
induction n with n p,
{ apply EM1_functor_gid },
{ refine !EMadd1_functor_succ ⬝* _,
refine ptrunc_functor_phomotopy _ (psusp_functor_phomotopy p ⬝* !psusp_functor_pid) ⬝* _,
refine ptrunc_functor_phomotopy _ (susp_functor_phomotopy p ⬝* !susp_functor_pid) ⬝* _,
apply ptrunc_functor_pid }
end
@ -58,7 +58,7 @@ namespace EM
induction n with n p,
{ apply EM1_functor_gcompose },
{ refine !EMadd1_functor_succ ⬝* _,
refine ptrunc_functor_phomotopy _ (psusp_functor_phomotopy p ⬝* !psusp_functor_pcompose) ⬝* _,
refine ptrunc_functor_phomotopy _ (susp_functor_phomotopy p ⬝* !susp_functor_pcompose) ⬝* _,
apply ptrunc_functor_pcompose }
end
@ -87,7 +87,7 @@ namespace EM
begin
induction n with n q,
{ exact EM1_functor_phomotopy p },
{ exact ptrunc_functor_phomotopy _ (psusp_functor_phomotopy q) }
{ exact ptrunc_functor_phomotopy _ (susp_functor_phomotopy q) }
end
definition EM_functor_phomotopy {G H : AbGroup} {φ ψ : G →g H} (p : φ ~ ψ) (n : ) :
@ -154,7 +154,7 @@ namespace EM
-- is_trunc_EMadd1 G n
definition loop_EMadd1_succ (G : AbGroup) (n : ) :
loop_EMadd1 G (n+1) ~* (loop_ptrunc_pequiv (n+1+1) (psusp (EMadd1 G (n+1))))⁻¹ᵉ* ∘*
loop_EMadd1 G (n+1) ~* (loop_ptrunc_pequiv (n+1+1) (susp (EMadd1 G (n+1))))⁻¹ᵉ* ∘*
freudenthal_pequiv (EMadd1 G (n+1)) (add_mul_le_mul_add n 1 1) ∘*
(ptrunc_pequiv (n+1+1) (EMadd1 G (n+1)))⁻¹ᵉ* :=
by reflexivity
@ -166,7 +166,7 @@ namespace EM
induction n with n IH,
{ refine pwhisker_left _ !hopf.to_pmap_delooping_pinv ⬝* _ ⬝*
pwhisker_right _ !hopf.to_pmap_delooping_pinv⁻¹*,
refine !loop_psusp_unit_natural⁻¹* ⬝h* _,
refine !loop_susp_unit_natural⁻¹* ⬝h* _,
apply ap1_psquare,
apply ptr_natural },
{ refine pwhisker_left _ !loop_EMadd1_succ ⬝* _ ⬝* pwhisker_right _ !loop_EMadd1_succ⁻¹*,
@ -175,7 +175,7 @@ namespace EM
refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _ ⬝*
pwhisker_right _ !to_pmap_freudenthal_pequiv⁻¹*,
apply ptrunc_functor_psquare,
exact !loop_psusp_unit_natural⁻¹* }
exact !loop_susp_unit_natural⁻¹* }
end
definition apn_EMadd1_pequiv_EM1_natural {G H : AbGroup} (φ : G →g H) (n : ) :
@ -264,10 +264,10 @@ namespace EM
refine (ptrunc_elim_pcompose ((succ n).+1) _ _)⁻¹* ⬝* _ ⬝*
(ptrunc_elim_ptrunc_functor ((succ n).+1) _ _)⁻¹*,
apply ptrunc_elim_phomotopy,
refine _ ⬝* !psusp_elim_psusp_functor⁻¹*,
refine _ ⬝* psusp_elim_phomotopy (IH _ _ _ _ _ (is_homomorphism_EM_up eX rX) _ (@is_conn_loop _ _ H1)
refine _ ⬝* !susp_elim_susp_functor⁻¹*,
refine _ ⬝* susp_elim_phomotopy (IH _ _ _ _ _ (is_homomorphism_EM_up eX rX) _ (@is_conn_loop _ _ H1)
(@is_trunc_loop _ _ H2) _ _ (EM_up_natural φ f eX eY p)),
apply psusp_elim_natural }
apply susp_elim_natural }
end
definition EMadd1_pequiv'_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ) (eX : Ω[succ n] X ≃* G)
@ -374,7 +374,7 @@ namespace EM
-- { exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) },
-- rewrite [EMadd1_succ],
-- exact ptrunc.elim ((succ n).+1)
-- (psusp.elim (f _ (EM_up e) (is_mul_hom_EM_up e r) _ _)),
-- (susp.elim (f _ (EM_up e) (is_mul_hom_EM_up e r) _ _)),
-- end
-- definition is_set_pmap_ptruncconntype {n : ℕ₋₂} (X Y : (n.+1)-Type*[n]) : is_set (X →* Y) :=
@ -550,7 +550,7 @@ namespace EM
begin
induction n with n IH,
{ exact is_contr_EM1 H },
{ have is_contr (ptrunc (n+2) (psusp (EMadd1 G n))), from _,
{ have is_contr (ptrunc (n+2) (susp (EMadd1 G n))), from _,
exact this }
end
@ -640,6 +640,7 @@ namespace EM
-- end
open group algebra
definition homotopy_group_fiber_EM1_functor {G H : Group} (φ : G →g H) :
π₁ (pfiber (EM1_functor φ)) ≃g kernel φ :=
sorry

View file

@ -86,14 +86,14 @@ namespace sphere
{ unfold [πnSn], exact sorry}
end
definition deg {n : } [H : is_succ n] (f : S* n →* S* n) : :=
definition deg {n : } [H : is_succ n] (f : S n →* S n) : :=
by induction H with n; exact πnSn n (π→g[n+1] f (tr surf))
definition deg_id (n : ) [H : is_succ n] : deg (pid (S* n)) = (1 : ) :=
definition deg_id (n : ) [H : is_succ n] : deg (pid (S n)) = (1 : ) :=
by induction H with n;
exact ap (πnSn n) (homotopy_group_functor_pid (succ n) (S* (succ n)) (tr surf)) ⬝ πnSn_surf n
exact ap (πnSn n) (homotopy_group_functor_pid (succ n) (S (succ n)) (tr surf)) ⬝ πnSn_surf n
definition deg_phomotopy {n : } [H : is_succ n] {f g : S* n →* S* n} (p : f ~* g) :
definition deg_phomotopy {n : } [H : is_succ n] {f g : S n →* S n} (p : f ~* g) :
deg f = deg g :=
begin
induction H with n,
@ -115,7 +115,7 @@ namespace sphere
{ symmetry, exact to_right_inv (equiv_of_isomorphism e) n}
end
definition deg_compose {n : } [H : is_succ n] (f g : S* n →* S* n) :
definition deg_compose {n : } [H : is_succ n] (f g : S n →* S n) :
deg (g ∘* f) = deg g *[] deg f :=
begin
induction H with n,
@ -123,7 +123,7 @@ namespace sphere
apply endomorphism_equiv_Z !πnSn !πnSn_surf (π→g[n+1] g)
end
definition deg_equiv {n : } [H : is_succ n] (f : S* n ≃* S* n) :
definition deg_equiv {n : } [H : is_succ n] (f : S n ≃* S n) :
deg f = 1 ⊎ deg f = -1 :=
begin
induction H with n,

View file

@ -48,7 +48,7 @@ attribute fwedge.il fwedge.inl [constructor]
namespace fwedge
definition fwedge_of_pwedge [unfold 3] {A B : Type*} (x : A B) : (bool.rec A B) :=
definition fwedge_of_wedge [unfold 3] {A B : Type*} (x : A B) : (bool.rec A B) :=
begin
induction x with a b,
{ exact inl ff a },
@ -56,7 +56,7 @@ namespace fwedge
{ exact glue ff ⬝ (glue tt)⁻¹ }
end
definition pwedge_of_fwedge [unfold 3] {A B : Type*} (x : (bool.rec A B)) : A B :=
definition wedge_of_fwedge [unfold 3] {A B : Type*} (x : (bool.rec A B)) : A B :=
begin
induction x with b x b,
{ induction b, exact pushout.inl x, exact pushout.inr x },
@ -64,24 +64,24 @@ namespace fwedge
{ induction b, exact pushout.glue ⋆, reflexivity }
end
definition pwedge_pequiv_fwedge [constructor] (A B : Type*) : A B ≃* (bool.rec A B) :=
definition wedge_pequiv_fwedge [constructor] (A B : Type*) : A B ≃* (bool.rec A B) :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact fwedge_of_pwedge },
{ exact pwedge_of_fwedge },
{ exact fwedge_of_wedge },
{ exact wedge_of_fwedge },
{ exact abstract begin intro x, induction x with b x b,
{ induction b: reflexivity },
{ exact glue tt },
{ apply eq_pathover_id_right,
refine ap_compose fwedge_of_pwedge _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
refine ap_compose fwedge_of_wedge _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction b, exact !elim_glue ⬝ph whisker_bl _ hrfl, apply square_of_eq idp }
end end },
{ exact abstract begin intro x, induction x with a b,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pwedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
refine ap_compose wedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
{ exact glue ff }
end
@ -104,7 +104,7 @@ namespace fwedge
{ reflexivity }
end
definition pwedge_pmap [constructor] {A B : Type*} {X : Type*} (f : A →* X) (g : B →* X) : (A B) →* X :=
definition wedge_pmap [constructor] {A B : Type*} {X : Type*} (f : A →* X) (g : B →* X) : (A B) →* X :=
begin
fapply pmap.mk,
{ intro x, induction x, exact (f a), exact (g a), exact (respect_pt (f) ⬝ (respect_pt g)⁻¹) },
@ -149,9 +149,9 @@ namespace fwedge
{ intro g, apply eq_of_phomotopy, exact fwedge_pmap_eta g }
end
definition pwedge_pmap_equiv [constructor] (A B X : Type*) :
definition wedge_pmap_equiv [constructor] (A B X : Type*) :
((A B) →* X) ≃ ((A →* X) × (B →* X)) :=
calc (A B) →* X ≃ (bool.rec A B) →* X : by exact pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)⁻¹ᵉ*
calc (A B) →* X ≃ (bool.rec A B) →* X : by exact pequiv_ppcompose_right (wedge_pequiv_fwedge A B)⁻¹ᵉ*
... ≃ Πi, (bool.rec A B) i →* X : by exact fwedge_pmap_equiv (bool.rec A B) X
... ≃ (A →* X) × (B →* X) : by exact pi_bool_left (λ i, bool.rec A B i →* X)
@ -211,16 +211,16 @@ namespace fwedge
end
-- hsquare 3:
definition fwedge_to_pwedge_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pequiv_ppcompose_right (pwedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
definition fwedge_to_wedge_nat_square {A B X Y : Type*} (f : X →* Y) :
hsquare (pequiv_ppcompose_right (wedge_pequiv_fwedge A B)) (pequiv_ppcompose_right (wedge_pequiv_fwedge A B)) (pcompose f) (pcompose f) :=
begin
exact sorry
end
definition pwedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A B),
(f ∘* (pwedge_pmap h k)) w = pwedge_pmap (f ∘* h )(f ∘* k) w :=
definition wedge_pmap_nat₂ (A B X Y : Type*) (f : X →* Y) (h : A →* X) (k : B →* X) : Π (w : A B),
(f ∘* (wedge_pmap h k)) w = wedge_pmap (f ∘* h )(f ∘* k) w :=
have H : _, from
(@prod_to_pi_bool_nat_square A B X Y f) ⬝htyh (fwedge_pmap_nat_square f) ⬝htyh (fwedge_to_pwedge_nat_square f),
(@prod_to_pi_bool_nat_square A B X Y f) ⬝htyh (fwedge_pmap_nat_square f) ⬝htyh (fwedge_to_wedge_nat_square f),
sorry
-- SA to here 7/5

View file

@ -501,7 +501,7 @@ namespace pushout
/- cofiber of pcod is suspension -/
definition pcofiber_pcod {A B : Type*} (f : A →* B) : pcofiber (pcod f) ≃* psusp A :=
definition pcofiber_pcod {A B : Type*} (f : A →* B) : pcofiber (pcod f) ≃* susp A :=
begin
fapply pequiv_of_equiv,
{ refine !pushout.symm ⬝e _,

View file

@ -4,7 +4,7 @@
import homotopy.join
open eq nat susp pointed pmap sigma is_equiv equiv fiber is_trunc trunc
trunc_index is_conn sphere_index bool unit join pushout
trunc_index is_conn bool unit join pushout
definition of_is_contr (A : Type) : is_contr A → A := @center A
@ -220,19 +220,19 @@ begin
{ intro w, apply is_prop.elimo } }
end
definition realprojective_two_cover : ₋₁ → two_cover :=
sphere_index.rec empty_two_cover (λ x, two_cover_step)
definition realprojective_two_cover : → two_cover :=
nat.rec (two_cover_step empty_two_cover) (λ x, two_cover_step)
definition realprojective : ₋₁ → Type₀ :=
definition realprojective : → Type₀ :=
λ n, carrier (realprojective_two_cover n)
definition realprojective_cov [reducible] (n : ₋₁)
definition realprojective_cov [reducible] (n : )
: realprojective n → BoolType :=
λ x, BoolType.mk
(cov (realprojective_two_cover n) x)
(cov_eq (realprojective_two_cover n) x)
definition theorem_III_3_u [reducible] (n : ₋₁)
definition theorem_III_3_u [reducible] (n : )
: (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
≃ (Σ x, realprojective_cov n x) × bool :=
calc (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
@ -245,14 +245,14 @@ calc (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
... ≃ (Σ x, realprojective_cov n x) × bool
: equiv_prod
definition theorem_III_3 (n : ₋₁)
definition theorem_III_3 (n : )
: sphere n ≃ sigma (realprojective_cov n) :=
begin
induction n with n IH,
{ symmetry, apply sigma_empty_left },
{ apply equiv.trans (join.bool (sphere n))⁻¹ᵉ,
apply equiv.trans (join.equiv_closed erfl IH),
symmetry, refine equiv.trans _ !join.symm,
{ symmetry, apply sorry /-sigma_empty_left-/ },
{ apply equiv.trans (join_bool (sphere n))⁻¹ᵉ,
apply equiv.trans (join_equiv_join erfl IH),
symmetry, refine equiv.trans _ !join_symm,
apply equiv.trans !pushout.flattening, esimp,
fapply pushout.equiv,
{ unfold function.compose, exact theorem_III_3_u n},

View file

@ -752,9 +752,9 @@ namespace smash
definition smash_pequiv_right [constructor] (A : Type*) (g : B ≃* D) : A ∧ B ≃* A ∧ D :=
smash_pequiv pequiv.rfl g
/- A ∧ B ≃* pcofiber (pprod_of_pwedge A B) -/
/- A ∧ B ≃* pcofiber (pprod_of_wedge A B) -/
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
definition prod_of_wedge [unfold 3] (v : wedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
@ -762,7 +762,7 @@ namespace smash
{ reflexivity }
end
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
definition wedge_of_sum [unfold 3] (v : A + B) : wedge A B :=
begin
induction v with a b,
{ exact pushout.inl a },
@ -780,7 +780,7 @@ end smash open smash
namespace pushout
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : wedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
begin
induction v with a b,
@ -856,14 +856,14 @@ namespace smash
refine !con.right_inv ⬝pv _, exact square_of_eq idp },
end
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
definition pprod_of_wedge [constructor] : wedge A B →* A ×* B :=
begin
fconstructor,
{ exact prod_of_wedge },
{ reflexivity }
end
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_wedge A B) :=
begin
apply pequiv_of_equiv (smash_equiv_cofiber A B),
exact cofiber.glue pt

View file

@ -506,77 +506,78 @@ namespace smash
end
/- Corollary 2: smashing with a suspension -/
definition smash_psusp_elim_equiv (A B X : Type*) :
ppmap (A ∧ psusp B) X ≃* ppmap (psusp (A ∧ B)) X :=
definition smash_susp_elim_equiv (A B X : Type*) :
ppmap (A ∧ susp B) X ≃* ppmap (susp (A ∧ B)) X :=
calc
ppmap (A ∧ psusp B) X ≃* ppmap (psusp B) (ppmap A X) : smash_adjoint_pmap A (psusp B) X
... ≃* ppmap B (Ω (ppmap A X)) : psusp_adjoint_loop' B (ppmap A X)
ppmap (A ∧ susp B) X ≃* ppmap (susp B) (ppmap A X) : smash_adjoint_pmap A (susp B) X
... ≃* ppmap B (Ω (ppmap A X)) : susp_adjoint_loop' B (ppmap A X)
... ≃* ppmap B (ppmap A (Ω X)) : pequiv_ppcompose_left (loop_ppmap_commute A X)
... ≃* ppmap (A ∧ B) (Ω X) : smash_adjoint_pmap A B (Ω X)
... ≃* ppmap (psusp (A ∧ B)) X : psusp_adjoint_loop' (A ∧ B) X
... ≃* ppmap (susp (A ∧ B)) X : susp_adjoint_loop' (A ∧ B) X
definition smash_psusp_elim_natural_right (A B : Type*) (f : X →* X') :
psquare (smash_psusp_elim_equiv A B X) (smash_psusp_elim_equiv A B X')
definition smash_susp_elim_natural_right (A B : Type*) (f : X →* X') :
psquare (smash_susp_elim_equiv A B X) (smash_susp_elim_equiv A B X')
(ppcompose_left f) (ppcompose_left f) :=
smash_adjoint_pmap_natural_right f ⬝h*
psusp_adjoint_loop_natural_right (ppcompose_left f) ⬝h*
susp_adjoint_loop_natural_right (ppcompose_left f) ⬝h*
ppcompose_left_psquare (loop_pmap_commute_natural_right A f) ⬝h*
(smash_adjoint_pmap_natural_right (Ω→ f))⁻¹ʰ* ⬝h*
(psusp_adjoint_loop_natural_right f)⁻¹ʰ*
(susp_adjoint_loop_natural_right f)⁻¹ʰ*
definition smash_psusp_elim_natural_left (X : Type*) (f : A' →* A) (g : B' →* B) :
psquare (smash_psusp_elim_equiv A B X) (smash_psusp_elim_equiv A' B' X)
(ppcompose_right (f ∧→ psusp_functor g)) (ppcompose_right (psusp_functor (f ∧→ g))) :=
definition smash_susp_elim_natural_left (X : Type*) (f : A' →* A) (g : B' →* B) :
psquare (smash_susp_elim_equiv A B X) (smash_susp_elim_equiv A' B' X)
(ppcompose_right (f ∧→ susp_functor g)) (ppcompose_right (susp_functor (f ∧→ g))) :=
begin
refine smash_adjoint_pmap_natural_lm X f (psusp_functor g) ⬝h*
refine smash_adjoint_pmap_natural_lm X f (susp_functor g) ⬝h*
_ ⬝h* _ ⬝h*
(smash_adjoint_pmap_natural_lm (Ω X) f g)⁻¹ʰ* ⬝h*
(psusp_adjoint_loop_natural_left (f ∧→ g))⁻¹ʰ*,
(susp_adjoint_loop_natural_left (f ∧→ g))⁻¹ʰ*,
rotate 2,
exact !ppcompose_left_ppcompose_right ⬝v* ppcompose_left_psquare (loop_pmap_commute_natural_left X f),
exact psusp_adjoint_loop_natural_left g ⬝v* psusp_adjoint_loop_natural_right (ppcompose_right f)
exact susp_adjoint_loop_natural_left g ⬝v* susp_adjoint_loop_natural_right (ppcompose_right f)
end
definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
definition smash_susp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
begin
fapply pequiv.MK,
{ exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid },
{ exact !smash_psusp_elim_equiv !pid },
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,
refine pap !smash_psusp_elim_equiv⁻¹ᵉ* !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_left_inv !smash_psusp_elim_equiv },
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right _) ⬝* _,
refine pap !smash_psusp_elim_equiv !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_right_inv !smash_psusp_elim_equiv }
{ exact !smash_susp_elim_equiv⁻¹ᵉ* !pid },
{ exact !smash_susp_elim_equiv !pid },
{ refine phomotopy_of_eq (!smash_susp_elim_natural_right⁻¹ʰ* _) ⬝* _,
refine pap !smash_susp_elim_equiv⁻¹ᵉ* !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_left_inv !smash_susp_elim_equiv },
{ refine phomotopy_of_eq (!smash_susp_elim_natural_right _) ⬝* _,
refine pap !smash_susp_elim_equiv !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_right_inv !smash_susp_elim_equiv }
end
definition smash_psusp_natural (f : A →* A') (g : B →* B') :
psquare (smash_psusp A B) (smash_psusp A' B') (f ∧→ (psusp_functor g)) (psusp_functor (f ∧→ g)) :=
definition smash_susp_natural (f : A →* A') (g : B →* B') :
psquare (smash_susp A B) (smash_susp A' B') (f ∧→ (susp_functor g)) (susp_functor (f ∧→ g)) :=
begin
refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,
refine pap !smash_psusp_elim_equiv⁻¹ᵉ* (!pcompose_pid ⬝* !pid_pcompose⁻¹*) ⬝* _,
rexact phomotopy_of_eq ((smash_psusp_elim_natural_left _ f g)⁻¹ʰ* !pid)⁻¹
refine phomotopy_of_eq (!smash_susp_elim_natural_right⁻¹ʰ* _) ⬝* _,
refine pap !smash_susp_elim_equiv⁻¹ᵉ* (!pcompose_pid ⬝* !pid_pcompose⁻¹*) ⬝* _,
rexact phomotopy_of_eq ((smash_susp_elim_natural_left _ f g)⁻¹ʰ* !pid)⁻¹
end
definition smash_iterate_psusp (n : ) (A B : Type*) : A ∧ iterate_psusp n B ≃* iterate_psusp n (A ∧ B) :=
print axioms smash_susp_natural
definition smash_iterate_susp (n : ) (A B : Type*) : A ∧ iterate_susp n B ≃* iterate_susp n (A ∧ B) :=
begin
induction n with n e,
{ reflexivity },
{ exact smash_psusp A (iterate_psusp n B) ⬝e* psusp_pequiv e }
{ exact smash_susp A (iterate_susp n B) ⬝e* susp_pequiv e }
end
definition smash_sphere (A : Type*) (n : ) : A ∧ psphere n ≃* iterate_psusp n A :=
smash_pequiv pequiv.rfl (psphere_pequiv_iterate_psusp n) ⬝e*
smash_iterate_psusp n A pbool ⬝e*
iterate_psusp_pequiv n (smash_pbool_pequiv A)
definition smash_sphere (A : Type*) (n : ) : A ∧ sphere n ≃* iterate_susp n A :=
smash_pequiv pequiv.rfl (sphere_pequiv_iterate_susp n) ⬝e*
smash_iterate_susp n A pbool ⬝e*
iterate_susp_pequiv n (smash_pbool_pequiv A)
definition smash_pcircle (A : Type*) : A ∧ pcircle ≃* psusp A :=
definition smash_pcircle (A : Type*) : A ∧ pcircle ≃* susp A :=
smash_sphere A 1
definition sphere_smash_sphere (n m : ) : psphere n ∧ psphere m ≃* psphere (n+m) :=
smash_sphere (psphere n) m ⬝e*
iterate_psusp_pequiv m (psphere_pequiv_iterate_psusp n) ⬝e*
iterate_psusp_iterate_psusp_rev m n pbool ⬝e*
(psphere_pequiv_iterate_psusp (n + m))⁻¹ᵉ*
definition sphere_smash_sphere (n m : ) : sphere n ∧ sphere m ≃* sphere (n+m) :=
smash_sphere (sphere n) m ⬝e*
iterate_susp_pequiv m (sphere_pequiv_iterate_susp n) ⬝e*
iterate_susp_iterate_susp_rev m n pbool ⬝e*
(sphere_pequiv_iterate_susp (n + m))⁻¹ᵉ*
end smash

View file

@ -1,29 +1,29 @@
import homotopy.join homotopy.smash
import homotopy.join homotopy.smash types.nat.hott
open eq equiv trunc function bool join sphere sphere_index sphere.ops prod
open pointed sigma smash is_trunc
open eq equiv trunc function bool join sphere sphere.ops prod
open pointed sigma smash is_trunc nat
namespace spherical_fibrations
/- classifying type of spherical fibrations -/
definition BG (n : ) : Type₁ :=
Σ(X : Type₀), ∥ X ≃ S n..-1
definition BG (n : ) [is_succ n] : Type₁ :=
Σ(X : Type₀), ∥ X ≃ S (pred n)
definition pointed_BG [instance] [constructor] (n : ) : pointed (BG n) :=
pointed.mk ⟨ S n..-1 , tr erfl ⟩
definition pointed_BG [instance] [constructor] (n : ) [is_succ n] : pointed (BG n) :=
pointed.mk ⟨ S (pred n) , tr erfl ⟩
definition pBG [constructor] (n : ) : Type* := pointed.mk' (BG n)
definition pBG [constructor] (n : ) [is_succ n] : Type* := pointed.mk' (BG n)
definition G (n : ) : Type₁ :=
definition G (n : ) [is_succ n] : Type₁ :=
pt = pt :> BG n
definition G_char (n : ) : G n ≃ (S n..-1 ≃ S n..-1) :=
definition G_char (n : ) [is_succ n] : G n ≃ (S (pred n) ≃ S (pred n)) :=
calc
G n ≃ Σ(p : S n..-1 = S n..-1), _ : sigma_eq_equiv
... ≃ (S n..-1 = S n..-1) : sigma_equiv_of_is_contr_right
... ≃ (S n..-1 ≃ S n..-1) : eq_equiv_equiv
G n ≃ Σ(p : pType.carrier (S (pred n)) = pType.carrier (S (pred n))), _ : sigma_eq_equiv
... ≃ (pType.carrier (S (pred n)) = pType.carrier (S (pred n))) : sigma_equiv_of_is_contr_right
... ≃ (S (pred n) ≃ S (pred n)) : eq_equiv_equiv
definition mirror (n : ) : S n..-1 → G n :=
definition mirror (n : ) [is_succ n] : S (pred n) → G n :=
begin
intro v, apply to_inv (G_char n),
exact sorry
@ -35,35 +35,38 @@ namespace spherical_fibrations
Yes, let eval : BG (n+1) → S n be the evaluation map
-/
definition is_succ_1 [instance] : is_succ 1 := is_succ.mk 0
definition S_of_BG (n : ) : Ω(pBG (n+1)) → S n :=
λ f, f..1 ▸ base
λ f, f..1 ▸ pt
definition BG_succ (n : ) : BG n → BG (n+1) :=
definition BG_succ (n : ) [H : is_succ n] : BG n → BG (n+1) :=
begin
induction H with n,
intro X, cases X with X p,
apply sigma.mk (susp X), induction p with f, apply tr,
apply susp.equiv f
refine sigma.mk (susp X) _, induction p with f, apply tr,
exact susp.equiv f
end
/- classifying type of pointed spherical fibrations -/
definition BF (n : ) : Type₁ :=
Σ(X : Type*), ∥ X ≃* S* n ∥
Σ(X : Type*), ∥ X ≃* S n ∥
definition pointed_BF [instance] [constructor] (n : ) : pointed (BF n) :=
pointed.mk ⟨ S* n , tr pequiv.rfl ⟩
pointed.mk ⟨ S n , tr pequiv.rfl ⟩
definition pBF [constructor] (n : ) : Type* := pointed.mk' (BF n)
definition BF_succ (n : ) : BF n → BF (n+1) :=
begin
intro X, cases X with X p,
apply sigma.mk (psusp X), induction p with f, apply tr,
apply susp.psusp_pequiv f
apply sigma.mk (susp X), induction p with f, apply tr,
apply susp.susp_pequiv f
end
definition BF_of_BG {n : } : BG n → BF n :=
definition BF_of_BG {n : } [H : is_succ n] : BG n → BF n :=
begin
induction H with n,
intro X, cases X with X p,
apply sigma.mk (pointed.MK (susp X) susp.north),
induction p with f, apply tr,
@ -78,13 +81,15 @@ namespace spherical_fibrations
apply tr, exact fX
end
definition BG_mul {n m : } (X : BG n) (Y : BG m) : BG (n + m) :=
definition BG_mul {n m : } [Hn : is_succ n] [Hm : is_succ m] (X : BG n) (Y : BG m) :
BG (n + m) :=
begin
induction Hn with n, induction Hm with m,
cases X with X pX, cases Y with Y pY,
apply sigma.mk (join X Y),
induction pX with fX, induction pY with fY,
apply tr, rewrite add_sub_one,
exact (join.equiv_closed fX fY) ⬝e (join.spheres n..-1 m..-1)
apply tr, rewrite [succ_add],
exact join_equiv_join fX fY ⬝e join_sphere n m
end
definition BF_mul {n m : } (X : BF n) (Y : BF m) : BF (n + m) :=
@ -95,7 +100,7 @@ namespace spherical_fibrations
exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m)
end
definition BF_of_BG_mul (n m : ) (X : BG n) (Y : BG m)
definition BF_of_BG_mul (n m : ) [is_succ n] [is_succ m] (X : BG n) (Y : BG m)
: BF_of_BG (BG_mul X Y) = BF_mul (BF_of_BG X) (BF_of_BG Y) :=
sorry

View file

@ -5,13 +5,8 @@ open susp eq pointed function is_equiv lift equiv is_trunc nat
namespace susp
variables {X X' Y Y' Z : Type*}
/- TODO: remove susp and rename psusp to susp -/
definition psuspn : → Type* → Type*
| psuspn 0 X := X
| psuspn (succ n) X := psusp (psuspn n X)
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) :
psusp_functor (pconst X Y) x = pt :=
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : susp X) :
susp_functor (pconst X Y) x = pt :=
begin
induction x,
{ reflexivity },
@ -19,81 +14,81 @@ namespace susp
{ apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ }
end
definition susp_functor_pconst [constructor] (X Y : Type*) : psusp_functor (pconst X Y) ~* pconst (psusp X) (psusp Y) :=
definition susp_functor_pconst [constructor] (X Y : Type*) : susp_functor (pconst X Y) ~* pconst (susp X) (susp Y) :=
begin
fapply phomotopy.mk,
{ exact susp_functor_pconst_homotopy },
{ reflexivity }
end
definition psusp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (psusp X) (psusp Y) :=
pmap.mk psusp_functor (eq_of_phomotopy !susp_functor_pconst)
definition susp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (susp X) (susp Y) :=
pmap.mk susp_functor (eq_of_phomotopy !susp_functor_pconst)
definition psusp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (psusp X) Y :=
ppcompose_left (loop_psusp_counit Y) ∘* psusp_pfunctor X (Ω Y)
definition susp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (susp X) Y :=
ppcompose_left (loop_susp_counit Y) ∘* susp_pfunctor X (Ω Y)
definition loop_psusp_pintro [constructor] (X Y : Type*) : ppmap (psusp X) Y →* ppmap X (Ω Y) :=
ppcompose_right (loop_psusp_unit X) ∘* pap1 (psusp X) Y
definition loop_susp_pintro [constructor] (X Y : Type*) : ppmap (susp X) Y →* ppmap X (Ω Y) :=
ppcompose_right (loop_susp_unit X) ∘* pap1 (susp X) Y
definition loop_psusp_pintro_natural_left (f : X' →* X) :
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X' Y)
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_psusp_unit_natural f)⁻¹*
definition loop_susp_pintro_natural_left (f : X' →* X) :
psquare (loop_susp_pintro X Y) (loop_susp_pintro X' Y)
(ppcompose_right (susp_functor f)) (ppcompose_right f) :=
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_susp_unit_natural f)⁻¹*
definition loop_psusp_pintro_natural_right (f : Y →* Y') :
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X Y')
definition loop_susp_pintro_natural_right (f : Y →* Y') :
psquare (loop_susp_pintro X Y) (loop_susp_pintro X Y')
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
!pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹*
definition is_equiv_loop_psusp_pintro [constructor] (X Y : Type*) :
is_equiv (loop_psusp_pintro X Y) :=
definition is_equiv_loop_susp_pintro [constructor] (X Y : Type*) :
is_equiv (loop_susp_pintro X Y) :=
begin
fapply adjointify,
{ exact psusp_pelim X Y },
{ intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g },
{ intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f }
{ exact susp_pelim X Y },
{ intro g, apply eq_of_phomotopy, exact susp_adjoint_loop_right_inv g },
{ intro f, apply eq_of_phomotopy, exact susp_adjoint_loop_left_inv f }
end
definition psusp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) :=
pequiv_of_pmap (loop_psusp_pintro X Y) (is_equiv_loop_psusp_pintro X Y)
definition susp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (susp X) Y ≃* ppmap X (Ω Y) :=
pequiv_of_pmap (loop_susp_pintro X Y) (is_equiv_loop_susp_pintro X Y)
definition psusp_adjoint_loop_natural_right (f : Y →* Y') :
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X Y')
definition susp_adjoint_loop_natural_right (f : Y →* Y') :
psquare (susp_adjoint_loop' X Y) (susp_adjoint_loop' X Y')
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
loop_psusp_pintro_natural_right f
loop_susp_pintro_natural_right f
definition psusp_adjoint_loop_natural_left (f : X' →* X) :
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X' Y)
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
loop_psusp_pintro_natural_left f
definition susp_adjoint_loop_natural_left (f : X' →* X) :
psquare (susp_adjoint_loop' X Y) (susp_adjoint_loop' X' Y)
(ppcompose_right (susp_functor f)) (ppcompose_right f) :=
loop_susp_pintro_natural_left f
definition iterate_psusp_iterate_psusp_rev (n m : ) (A : Type*) :
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (m + n) A :=
definition iterate_susp_iterate_susp_rev (n m : ) (A : Type*) :
iterate_susp n (iterate_susp m A) ≃* iterate_susp (m + n) A :=
begin
induction n with n e,
{ reflexivity },
{ exact psusp_pequiv e }
{ exact susp_pequiv e }
end
definition iterate_psusp_pequiv [constructor] (n : ) {X Y : Type*} (f : X ≃* Y) :
iterate_psusp n X ≃* iterate_psusp n Y :=
definition iterate_susp_pequiv [constructor] (n : ) {X Y : Type*} (f : X ≃* Y) :
iterate_susp n X ≃* iterate_susp n Y :=
begin
induction n with n e,
{ exact f },
{ exact psusp_pequiv e }
{ exact susp_pequiv e }
end
open algebra nat
definition iterate_psusp_iterate_psusp (n m : ) (A : Type*) :
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (n + m) A :=
iterate_psusp_iterate_psusp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_psusp k A) (add.comm m n))
definition iterate_susp_iterate_susp (n m : ) (A : Type*) :
iterate_susp n (iterate_susp m A) ≃* iterate_susp (n + m) A :=
iterate_susp_iterate_susp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_susp k A) (add.comm m n))
definition plift_psusp.{u v} : Π(A : Type*), plift.{u v} (psusp A) ≃* psusp (plift.{u v} A) :=
definition plift_susp.{u v} : Π(A : Type*), plift.{u v} (susp A) ≃* susp (plift.{u v} A) :=
begin
intro A,
calc
plift.{u v} (psusp A) ≃* psusp A : by exact (pequiv_plift (psusp A))⁻¹ᵉ*
... ≃* psusp (plift.{u v} A) : by exact psusp_pequiv (pequiv_plift.{u v} A)
plift.{u v} (susp A) ≃* susp A : by exact (pequiv_plift (susp A))⁻¹ᵉ*
... ≃* susp (plift.{u v} A) : by exact susp_pequiv (pequiv_plift.{u v} A)
end
definition is_contr_susp [instance] (A : Type) [H : is_contr A] : is_contr (susp A) :=
@ -106,32 +101,30 @@ namespace susp
exact whisker_left idp (ap merid !eq_of_is_contr)
end
definition is_contr_psusp [instance] (A : Type) [H : is_contr A] : is_contr (psusp A) :=
is_contr_susp A
definition psusp_pelim2 {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) : ((loop_psusp_pintro X Y) f) ~* ((loop_psusp_pintro X Y) g) :=
pwhisker_right (loop_psusp_unit X) (Ω⇒ p)
definition loop_susp_pintro_phomotopy {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) :
loop_susp_pintro X Y f ~* loop_susp_pintro X Y g :=
pwhisker_right (loop_susp_unit X) (Ω⇒ p)
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
-- rename: psusp_functor_psquare
-- rename: susp_functor_psquare
definition suspend_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
sorry
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : psusp A₀₀ →* A₀₂) (f₂₁ : psusp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_psusp_pintro A₀₀ A₀₂) f₀₁) ((loop_psusp_pintro A₂₀ A₂₂) f₂₁)) :=
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : susp A₀₀ →* A₀₂) (f₂₁ : susp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_susp_pintro A₀₀ A₀₂) f₀₁) ((loop_susp_pintro A₂₀ A₂₂) f₂₁)) :=
begin
intro p,
refine pvconcat _ (ap1_psquare p),
exact loop_psusp_unit_natural f₁₀
exact loop_susp_unit_natural f₁₀
end
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((psusp_pelim A₀₀ A₀₂) f₀₁) ((psusp_pelim A₂₀ A₂₂) f₂₁)) :=
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((susp_pelim A₀₀ A₀₂) f₀₁) ((susp_pelim A₂₀ A₂₂) f₂₁)) :=
begin
intro p,
refine pvconcat (suspend_psquare p) _,
exact psquare_transpose (loop_psusp_counit_natural f₁₂)
exact psquare_transpose (loop_susp_counit_natural f₁₂)
end
end susp

View file

@ -6,7 +6,7 @@ open wedge pushout eq prod sum pointed equiv is_equiv unit lift
namespace wedge
definition wedge_flip [unfold 3] {A B : Type*} (x : A B) : B A :=
definition wedge_flip' [unfold 3] {A B : Type*} (x : A B) : B A :=
begin
induction x,
{ exact inr a },
@ -15,26 +15,29 @@ namespace wedge
end
-- TODO: fix precedences
definition pwedge_flip [constructor] (A B : Type*) : (A B) →* (B A) :=
pmap.mk wedge_flip (glue ⋆)⁻¹
definition wedge_flip [constructor] (A B : Type*) : A B →* B A :=
pmap.mk wedge_flip' (glue ⋆)⁻¹
definition wedge_flip_wedge_flip {A B : Type*} (x : A B) : wedge_flip (wedge_flip x) = x :=
definition wedge_flip'_wedge_flip' [unfold 3] {A B : Type*} (x : A B) : wedge_flip' (wedge_flip' x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
apply hdeg_square,
exact ap_compose wedge_flip _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
exact ap_compose wedge_flip' _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
end
definition pwedge_comm [constructor] (A B : Type*) : A B ≃* B A :=
definition wedge_flip_wedge_flip (A B : Type*) : wedge_flip B A ∘* wedge_flip A B ~* pid (A B) :=
phomotopy.mk wedge_flip'_wedge_flip' (whisker_right _ (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ !con.left_inv)⁻¹
definition wedge_comm [constructor] (A B : Type*) : A B ≃* B A :=
begin
fapply pequiv.MK',
{ exact pwedge_flip A B },
{ exact wedge_flip },
{ exact wedge_flip_wedge_flip },
{ exact wedge_flip_wedge_flip }
fapply pequiv.MK,
{ exact wedge_flip A B },
{ exact wedge_flip B A },
{ exact wedge_flip_wedge_flip A B },
{ exact wedge_flip_wedge_flip B A }
end
-- TODO: wedge is associative
@ -53,15 +56,15 @@ namespace wedge
end
definition pwedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A B ≃* A' B' :=
definition wedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A B ≃* A' B' :=
begin
fapply pequiv_of_equiv,
exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b),
exact ap pushout.inl (respect_pt a)
end
definition plift_pwedge.{u v} (A B : Type*) : plift.{u v} (A B) ≃* plift.{u v} A plift.{u v} B :=
definition plift_wedge.{u v} (A B : Type*) : plift.{u v} (A B) ≃* plift.{u v} A plift.{u v} B :=
calc plift.{u v} (A B) ≃* A B : by exact !pequiv_plift⁻¹ᵉ*
... ≃* plift.{u v} A plift.{u v} B : by exact pwedge_pequiv !pequiv_plift !pequiv_plift
... ≃* plift.{u v} A plift.{u v} B : by exact wedge_pequiv !pequiv_plift !pequiv_plift
end wedge

View file

@ -174,6 +174,10 @@ namespace eq
phomotopy_rec_on_idp phomotopy.rfl H = H :=
!phomotopy_rec_on_eq_phomotopy_of_eq
definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type}
{a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) :
eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp :=
by induction q; reflexivity
end eq open eq
@ -477,6 +481,11 @@ namespace is_trunc
end is_trunc
namespace sigma
open sigma.ops
definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a)
[H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 :=
!sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right
definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p :=
@ -903,13 +912,13 @@ end category
namespace sphere
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S* n →* S* m) :
-- f ~* pconst (S* n) (S* m) :=
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S n →* S m) :
-- f ~* pconst (S n) (S m) :=
-- begin
-- assert H : is_contr (Ω[n] (S* m)),
-- assert H : is_contr (Ω[n] (S m)),
-- { apply homotopy_group_sphere_le, },
-- apply phomotopy_of_eq,
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
-- apply eq_of_fn_eq_fn !sphere_pmap_pequiv,
-- apply @is_prop.elim
-- end
@ -948,8 +957,8 @@ end injective_surjective
-- Yuri Sulyma's code from HoTT MRC
notation `⅀→`:(max+5) := psusp_functor
notation `⅀⇒`:(max+5) := psusp_functor_phomotopy
notation `⅀→`:(max+5) := susp_functor
notation `⅀⇒`:(max+5) := susp_functor_phomotopy
notation `Ω⇒`:(max+5) := ap1_phomotopy
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=

View file

@ -37,6 +37,7 @@ namespace pointed
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f
/- remove some duplicates: loop_ppmap_commute, loop_ppmap_pequiv, loop_ppmap_pequiv', pfunext -/
definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
(loop_ppmap_commute X Y)⁻¹ᵉ*

View file

@ -1014,6 +1014,8 @@ namespace pointed
ppmap A₊ B ≃* A →ᵘ* B :=
pequiv_of_equiv (pmap_equiv_left A B) idp
/- There are some lemma's needed to prove the naturality of the equivalence
Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) -/
definition ppi_eq_equiv_natural_gen_lem {B C : A → Type} {b₀ : B pt} {c₀ : C pt}
{f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k : ppi_gen B b₀} {k' : ppi_gen C c₀}
(p : pmap_compose_ppi_gen f f₀ k ~~* k') :
@ -1086,6 +1088,7 @@ namespace pointed
{ exact !ppi_eq_equiv_natural_gen_refl ◾ (!idp_con ⬝ !ppi_eq_refl) }
end
/- below is an alternate proof strategy for the naturality of loop_pppi_pequiv_natural,
where we define loop_pppi_pequiv as composite of pointed equivalences, and proved the
naturality individually. That turned out to be harder.

View file

@ -779,7 +779,7 @@ namespace spectrum
-- Suspension prespectra are one that's naturally indexed on the natural numbers
definition psp_susp (X : Type*) : gen_prespectrum + :=
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X))
gen_prespectrum.mk (λn, iterate_susp n X) (λn, loop_susp_unit (iterate_susp n X))
-- The sphere prespectrum
definition psp_sphere : gen_prespectrum + :=

View file

@ -7,10 +7,10 @@ namespace spectrum
definition smash_prespectrum (X : Type*) (Y : prespectrum) : prespectrum :=
prespectrum.mk (λ z, X ∧ Y z) begin
intro n, refine loop_psusp_pintro (X ∧ Y n) (X ∧ Y (n + 1)) _,
refine _ ∘* (smash_psusp X (Y n))⁻¹ᵉ*,
intro n, refine loop_susp_pintro (X ∧ Y n) (X ∧ Y (n + 1)) _,
refine _ ∘* (smash_susp X (Y n))⁻¹ᵉ*,
refine smash_functor !pid _,
refine psusp_pelim (Y n) (Y (n + 1)) _,
refine susp_pelim (Y n) (Y (n + 1)) _,
exact !glue
end
@ -18,11 +18,11 @@ definition smash_prespectrum_fun {X X' : Type*} {Y Y' : prespectrum} (f : X →*
smap.mk (λn, smash_functor f (g n)) begin
intro n,
refine susp_to_loop_psquare _ _ _ _ _,
refine pvconcat (psquare_transpose (phinverse (smash_psusp_natural f (g n)))) _,
refine pvconcat (psquare_transpose (phinverse (smash_susp_natural f (g n)))) _,
refine vconcat_phomotopy _ (smash_functor_split f (g (S n))),
refine phomotopy_vconcat (smash_functor_split f (psusp_functor (g n))) _,
refine phomotopy_vconcat (smash_functor_split f (susp_functor (g n))) _,
refine phconcat _ _,
let glue_adjoint := psusp_pelim (Y n) (Y (S n)) (glue Y n),
let glue_adjoint := susp_pelim (Y n) (Y (S n)) (glue Y n),
exact pid X' ∧→ glue_adjoint,
exact smash_functor_psquare (pvrefl f) (phrefl glue_adjoint),
refine smash_functor_psquare (phrefl (pid X')) _,