From 38bff9ddb4d0e68d76f12c369d376d9366e90b9d Mon Sep 17 00:00:00 2001 From: Steve Awodey Date: Thu, 1 Jun 2017 18:01:52 -0400 Subject: [PATCH] very small additions --- algebra/exact_couple.hlean | 6 +++++- algebra/subgroup.hlean | 14 ++++++++++++++ 2 files changed, 19 insertions(+), 1 deletion(-) diff --git a/algebra/exact_couple.hlean b/algebra/exact_couple.hlean index 8a4c47c..4d51500 100644 --- a/algebra/exact_couple.hlean +++ b/algebra/exact_couple.hlean @@ -175,12 +175,16 @@ definition subgroup_iso_exact_at_A_triangle : ab_kernel_incl i ~ ab_image_incl k definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d := (image_homomorphism k j) ∘g subgroup_iso_exact_at_A + open eq + definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im := begin intro x, fapply subtype_eq, - refine sorry --(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _, + refine sorry +-- fapply ab_hom_factors_through_lift _ _ , +--(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _, end /-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC := diff --git a/algebra/subgroup.hlean b/algebra/subgroup.hlean index b2bd9b8..dac59c2 100644 --- a/algebra/subgroup.hlean +++ b/algebra/subgroup.hlean @@ -308,6 +308,13 @@ definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : subgroup_rel intro g h, apply subtype_eq, esimp, apply respect_mul end +definition hom_factors_through_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : +f = incl_of_subgroup K ∘g hom_lift f K Hyp := + begin + fapply homomorphism_eq, + reflexivity + end + definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g ab_subgroup K := begin fapply homomorphism.mk, @@ -318,6 +325,13 @@ definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgrou intro g h, apply subtype_eq, apply respect_mul, end +definition ab_hom_factors_through_lift {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : +f = incl_of_subgroup K ∘g hom_lift f K Hyp := + begin + fapply homomorphism_eq, + reflexivity + end + definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g image f := begin fapply hom_lift f,