working with Ulrik on basic group theory

This commit is contained in:
Egbert Rijke 2016-09-16 02:03:58 -04:00
parent f826a7a711
commit 392590bec8

View file

@ -155,7 +155,7 @@ namespace group
CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N)) CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N))
definition gq_map : G →g quotient_group N := definition gq_map : G →g quotient_group N :=
sorry homomorphism.mk class_of (λ g h, idp)
namespace quotient namespace quotient
notation `⟦`:max a `⟧`:0 := gq_map a _ notation `⟦`:max a `⟧`:0 := gq_map a _
@ -165,20 +165,56 @@ namespace group
variable {N} variable {N}
definition gq_map_eq_one (g : G) (H : N g) : gq_map N g = 1 := definition gq_map_eq_one (g : G) (H : N g) : gq_map N g = 1 :=
sorry begin
apply eq_of_rel,
have e : (g * 1⁻¹ = g),
from calc
g * 1⁻¹ = g * 1 : one_inv
... = g : mul_one,
unfold quotient_rel, rewrite e, exact H
end
definition rel_of_gq_map_eq_one (g : G) (H : gq_map N g = 1) : N g := definition rel_of_gq_map_eq_one (g : G) (H : gq_map N g = 1) : N g :=
sorry begin
have e : (g * 1⁻¹ = g),
from calc
g * 1⁻¹ = g * 1 : one_inv
... = g : mul_one,
rewrite (inverse e),
apply rel_of_eq _ H
end
definition glift (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' := definition quotient_group_elim (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
sorry begin
fapply homomorphism.mk,
-- define function
{ apply set_quotient.elim f,
intro g h K,
apply eq_of_mul_inv_eq_one,
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
from calc
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
... = f g * (f h)⁻¹ : to_respect_inv,
rewrite (inverse e),
apply H, exact K},
{ intro g h, induction g using set_quotient.rec_prop with g,
induction h using set_quotient.rec_prop with h,
krewrite (inverse (to_respect_mul (gq_map N) g h)),
unfold gq_map, esimp, exact to_respect_mul f g h }
end
definition glift_gq_map (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : glift f H ∘g gq_map N ~ f := definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group_elim f H ∘g gq_map N ~ f :=
sorry begin
intro g, reflexivity
end
definition glift_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : quotient_group N →g G') : definition glift_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
g ~ glift f H := : ( k ∘g gq_map N ~ f ) → k ~ quotient_group_elim f H :=
sorry begin
intro K cg, induction cg using set_quotient.rec_prop with g,
krewrite (quotient_group_compute f),
exact K g
end
definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) := is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) :=