separate ses from exact_couple

This commit is contained in:
Egbert Rijke 2017-02-16 23:00:55 -05:00
commit 3bd66e60a4
2 changed files with 138 additions and 126 deletions

View file

@ -1,140 +1,16 @@
/-
Copyright (c) 2016 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Egbert Rijke
Authors: Egbert Rijke, Steve Awodey
Exact couple, derived couples, and so on
-/
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup .ses
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
equiv is_equiv
structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
( im_in_ker : Π(a:A), g (f a) = 1)
( ker_in_im : Π(b:B), (g b = 1) → image_subgroup f b)
structure SES (A B C : AbGroup) :=
( f : A →g B)
( g : B →g C)
( Hf : is_embedding f)
( Hg : is_surjective g)
( ex : is_exact f g)
definition SES_of_inclusion {A B : AbGroup} (f : A →g B) (Hf : is_embedding f) : SES A B (quotient_ab_group (image_subgroup f)) :=
begin
have Hg : is_surjective (ab_qg_map (image_subgroup f)),
from is_surjective_ab_qg_map (image_subgroup f),
fapply SES.mk,
exact f,
exact ab_qg_map (image_subgroup f),
exact Hf,
exact Hg,
fapply is_exact.mk,
intro a,
fapply qg_map_eq_one, fapply tr, fapply fiber.mk, exact a, reflexivity,
intro b, intro p,
fapply rel_of_ab_qg_map_eq_one, assumption
end
definition SES_of_surjective_map {B C : AbGroup} (g : B →g C) (Hg : is_surjective g) : SES (ab_kernel g) B C :=
begin
fapply SES.mk,
exact ab_kernel_incl g,
exact g,
exact is_embedding_ab_kernel_incl g,
exact Hg,
fapply is_exact.mk,
intro a, induction a with a p, exact p,
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact b, exact p, reflexivity,
end
structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') :=
( hA : A →g A')
( hB : B →g B')
( hC : C →g C')
( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB)
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
-- begin
-- fapply ab_group_first_iso_thm B C (SES.g ses),
-- end
-- definition pre_right_extend_SES (to separate the following definition and replace C with B/A)
definition quotient_codomain_SES {A B C : AbGroup} (ses : SES A B C) : quotient_ab_group (kernel_subgroup (SES.g ses)) ≃g C :=
begin
exact (codomain_surjection_is_quotient (SES.g ses) (SES.Hg ses))
end
definition quotient_triangle_SES {A B C : AbGroup} (ses : SES A B C) : (quotient_codomain_SES ses) ∘g (ab_qg_map (kernel_subgroup (SES.g ses))) ~ (SES.g ses) :=
begin
reflexivity
end
section short_exact_sequences
parameters {A B C A' B' C' : AbGroup}
(ses : SES A B C) (ses' : SES A' B' C')
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
local abbreviation f := SES.f ses
local abbreviation g := SES.g ses
local abbreviation ex := SES.ex ses
local abbreviation q := ab_qg_map (kernel_subgroup g)
local abbreviation f' := SES.f ses'
local abbreviation g' := SES.g ses'
local abbreviation ex' := SES.ex ses'
local abbreviation q' := ab_qg_map (kernel_subgroup g')
local abbreviation α := quotient_codomain_SES ses
local abbreviation α' := quotient_codomain_SES ses'
include htpy1
-- We define a group homomorphism B/ker(g) →g B'/ker(g'), keeping in mind that ker(g)=A and ker(g')=A'.
definition quotient_extend_SES : quotient_ab_group (kernel_subgroup g) →g quotient_ab_group (kernel_subgroup g') :=
begin
fapply ab_group_quotient_homomorphism B B' (kernel_subgroup g) (kernel_subgroup g') hB,
intro b,
intro K,
have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K,
induction k, induction a with a p,
rewrite [p⁻¹],
rewrite [htpy1 a],
fapply is_exact.im_in_ker ex' (hA a)
end
local abbreviation k := quotient_extend_SES
definition quotient_extend_SES_square : k ∘g (ab_qg_map (kernel_subgroup g)) ~ (ab_qg_map (kernel_subgroup g')) ∘g hB :=
begin
fapply quotient_group_compute
end
definition right_extend_SES : C →g C' :=
α' ∘g k ∘g α⁻¹ᵍ
local abbreviation hC := right_extend_SES
definition right_extend_hom_SES : hom_SES ses ses' :=
begin
fapply hom_SES.mk,
exact hA,
exact hB,
exact hC,
exact htpy1,
exact calc
hC ∘g g ~ hC ∘g α ∘g q : by reflexivity
... ~ α' ∘g k ∘g α⁻¹ᵍ ∘g α ∘g q : by reflexivity
... ~ α' ∘g k ∘g q : by exact hwhisker_left (α' ∘g k) (hwhisker_right q (left_inv α))
... ~ α' ∘g q' ∘g hB : by exact hwhisker_left α' (quotient_extend_SES_square)
... ~ g' ∘g hB : by reflexivity
end
end short_exact_sequences
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) :=

136
algebra/ses.hlean Normal file
View file

@ -0,0 +1,136 @@
/-
Copyright (c) 2017 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Egbert Rijke
Exact couple, derived couples, and so on
-/
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
equiv is_equiv
structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
( im_in_ker : Π(a:A), g (f a) = 1)
( ker_in_im : Π(b:B), (g b = 1) → image_subgroup f b)
structure SES (A B C : AbGroup) :=
( f : A →g B)
( g : B →g C)
( Hf : is_embedding f)
( Hg : is_surjective g)
( ex : is_exact f g)
definition SES_of_inclusion {A B : AbGroup} (f : A →g B) (Hf : is_embedding f) : SES A B (quotient_ab_group (image_subgroup f)) :=
begin
have Hg : is_surjective (ab_qg_map (image_subgroup f)),
from is_surjective_ab_qg_map (image_subgroup f),
fapply SES.mk,
exact f,
exact ab_qg_map (image_subgroup f),
exact Hf,
exact Hg,
fapply is_exact.mk,
intro a,
fapply qg_map_eq_one, fapply tr, fapply fiber.mk, exact a, reflexivity,
intro b, intro p,
fapply rel_of_ab_qg_map_eq_one, assumption
end
definition SES_of_surjective_map {B C : AbGroup} (g : B →g C) (Hg : is_surjective g) : SES (ab_kernel g) B C :=
begin
fapply SES.mk,
exact ab_kernel_incl g,
exact g,
exact is_embedding_ab_kernel_incl g,
exact Hg,
fapply is_exact.mk,
intro a, induction a with a p, exact p,
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact b, exact p, reflexivity,
end
structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') :=
( hA : A →g A')
( hB : B →g B')
( hC : C →g C')
( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB)
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
-- begin
-- fapply ab_group_first_iso_thm B C (SES.g ses),
-- end
-- definition pre_right_extend_SES (to separate the following definition and replace C with B/A)
definition quotient_codomain_SES {A B C : AbGroup} (ses : SES A B C) : quotient_ab_group (kernel_subgroup (SES.g ses)) ≃g C :=
begin
exact (codomain_surjection_is_quotient (SES.g ses) (SES.Hg ses))
end
definition quotient_triangle_SES {A B C : AbGroup} (ses : SES A B C) : (quotient_codomain_SES ses) ∘g (ab_qg_map (kernel_subgroup (SES.g ses))) ~ (SES.g ses) :=
begin
reflexivity
end
section short_exact_sequences
parameters {A B C A' B' C' : AbGroup}
(ses : SES A B C) (ses' : SES A' B' C')
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
local abbreviation f := SES.f ses
local abbreviation g := SES.g ses
local abbreviation ex := SES.ex ses
local abbreviation q := ab_qg_map (kernel_subgroup g)
local abbreviation f' := SES.f ses'
local abbreviation g' := SES.g ses'
local abbreviation ex' := SES.ex ses'
local abbreviation q' := ab_qg_map (kernel_subgroup g')
local abbreviation α := quotient_codomain_SES ses
local abbreviation α' := quotient_codomain_SES ses'
include htpy1
-- We define a group homomorphism B/ker(g) →g B'/ker(g'), keeping in mind that ker(g)=A and ker(g')=A'.
definition quotient_extend_SES : quotient_ab_group (kernel_subgroup g) →g quotient_ab_group (kernel_subgroup g') :=
begin
fapply ab_group_quotient_homomorphism B B' (kernel_subgroup g) (kernel_subgroup g') hB,
intro b,
intro K,
have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K,
induction k, induction a with a p,
rewrite [p⁻¹],
rewrite [htpy1 a],
fapply is_exact.im_in_ker ex' (hA a)
end
local abbreviation k := quotient_extend_SES
definition quotient_extend_SES_square : k ∘g (ab_qg_map (kernel_subgroup g)) ~ (ab_qg_map (kernel_subgroup g')) ∘g hB :=
begin
fapply quotient_group_compute
end
definition right_extend_SES : C →g C' :=
α' ∘g k ∘g α⁻¹ᵍ
local abbreviation hC := right_extend_SES
definition right_extend_hom_SES : hom_SES ses ses' :=
begin
fapply hom_SES.mk,
exact hA,
exact hB,
exact hC,
exact htpy1,
exact calc
hC ∘g g ~ hC ∘g α ∘g q : by reflexivity
... ~ α' ∘g k ∘g α⁻¹ᵍ ∘g α ∘g q : by reflexivity
... ~ α' ∘g k ∘g q : by exact hwhisker_left (α' ∘g k) (hwhisker_right q (left_inv α))
... ~ α' ∘g q' ∘g hB : by exact hwhisker_left α' (quotient_extend_SES_square)
... ~ g' ∘g hB : by reflexivity
end
end short_exact_sequences