working on tensor group
This commit is contained in:
parent
492b433cc6
commit
3c9ca4b51c
1 changed files with 126 additions and 2 deletions
|
@ -8,7 +8,7 @@ Constructions of groups
|
|||
|
||||
import .basic hit.set_quotient types.sigma types.list types.sum
|
||||
|
||||
open eq algebra is_trunc pi pointed set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||||
equiv
|
||||
set_option class.force_new true
|
||||
namespace group
|
||||
|
@ -32,7 +32,7 @@ namespace group
|
|||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal
|
||||
|
||||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||||
{A : CommGroup}
|
||||
{A B : CommGroup}
|
||||
|
||||
theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) :=
|
||||
inv_inv h ▸ is_normal_subgroup N h⁻¹ r
|
||||
|
@ -597,6 +597,130 @@ namespace group
|
|||
exact !respect_inv⁻¹}}
|
||||
end
|
||||
|
||||
/- Free Commutative Group of a set -/
|
||||
namespace tensor_group
|
||||
|
||||
local abbreviation ι := @free_comm_group_inclusion
|
||||
|
||||
inductive tensor_rel : free_comm_group (hset_of_Group A ×t hset_of_Group B) → Type :=
|
||||
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
|
||||
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
|
||||
|
||||
exit
|
||||
open tensor_rel
|
||||
local abbreviation R [reducible] := tensor_rel
|
||||
attribute tensor_rel.rrefl [refl]
|
||||
attribute tensor_rel.rtrans [trans]
|
||||
|
||||
definition tensor_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
|
||||
local abbreviation FG := tensor_carrier
|
||||
|
||||
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
|
||||
begin constructor, intro s, apply tr, unfold R end
|
||||
local attribute is_reflexive_R [instance]
|
||||
|
||||
variable {X}
|
||||
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
|
||||
begin
|
||||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
||||
{ reflexivity},
|
||||
{ repeat esimp [map], exact cancel2 x},
|
||||
{ repeat esimp [map], exact cancel1 x},
|
||||
{ repeat esimp [map], apply rflip},
|
||||
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
|
||||
{ exact rtrans IH₁ IH₂}
|
||||
end
|
||||
|
||||
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
|
||||
begin
|
||||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
||||
{ reflexivity},
|
||||
{ repeat esimp [map], exact cancel2 x},
|
||||
{ repeat esimp [map], exact cancel1 x},
|
||||
{ repeat esimp [map], apply rflip},
|
||||
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
|
||||
{ exact rtrans IH₁ IH₂}
|
||||
end
|
||||
|
||||
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
|
||||
begin
|
||||
induction l with t l IH,
|
||||
{ reflexivity},
|
||||
{ rewrite [concat_cons], transitivity (t :: s :: l),
|
||||
{ exact resp_append !rflip !rrefl},
|
||||
{ exact resp_append (rrefl [t]) IH}}
|
||||
end
|
||||
|
||||
definition tensor_one [constructor] : FG X := class_of []
|
||||
definition tensor_inv [unfold 3] : FG X → FG X :=
|
||||
quotient_unary_map (reverse ∘ map sum.flip)
|
||||
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
|
||||
definition tensor_mul [unfold 3 4] : FG X → FG X → FG X :=
|
||||
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
|
||||
|
||||
section
|
||||
local notation 1 := tensor_one
|
||||
local postfix ⁻¹ := tensor_inv
|
||||
local infix * := tensor_mul
|
||||
|
||||
theorem tensor_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||||
begin
|
||||
refine set_quotient.rec_hprop _ g₁,
|
||||
refine set_quotient.rec_hprop _ g₂,
|
||||
refine set_quotient.rec_hprop _ g₃,
|
||||
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
||||
exact ap class_of !append.assoc
|
||||
end
|
||||
|
||||
theorem tensor_one_mul (g : FG X) : 1 * g = g :=
|
||||
begin
|
||||
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
||||
exact ap class_of !append_nil_left
|
||||
end
|
||||
|
||||
theorem tensor_mul_one (g : FG X) : g * 1 = g :=
|
||||
begin
|
||||
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
||||
exact ap class_of !append_nil_right
|
||||
end
|
||||
|
||||
theorem tensor_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
|
||||
begin
|
||||
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
||||
apply eq_of_rel, apply tr,
|
||||
induction g with s l IH,
|
||||
{ reflexivity},
|
||||
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
|
||||
refine rtrans _ IH,
|
||||
apply resp_append, reflexivity,
|
||||
change R X ([flip s, s] ++ l) ([] ++ l),
|
||||
apply resp_append,
|
||||
induction s, apply cancel2, apply cancel1,
|
||||
reflexivity}
|
||||
end
|
||||
|
||||
theorem tensor_mul_comm (g h : FG X) : g * h = h * g :=
|
||||
begin
|
||||
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
||||
refine set_quotient.rec_hprop _ h, clear h, intro h,
|
||||
apply eq_of_rel, apply tr,
|
||||
revert h, induction g with s l IH: intro h,
|
||||
{ rewrite [append_nil_left, append_nil_right]},
|
||||
{ rewrite [append_cons,-concat_append],
|
||||
transitivity concat s (l ++ h), apply rel_cons_concat,
|
||||
rewrite [-append_concat], apply IH}
|
||||
end
|
||||
end
|
||||
end tensor_group open tensor_group
|
||||
|
||||
variables (X)
|
||||
definition group_tensor_group [constructor] : comm_group (tensor_carrier X) :=
|
||||
comm_group.mk tensor_mul _ tensor_mul_assoc tensor_one tensor_one_mul tensor_mul_one
|
||||
tensor_inv tensor_mul_left_inv tensor_mul_comm
|
||||
|
||||
definition tensor_group [constructor] : CommGroup :=
|
||||
CommGroup.mk _ (group_tensor_group X)
|
||||
|
||||
section kernels
|
||||
|
||||
variables {G₁ G₂ : Group}
|
||||
|
|
Loading…
Reference in a new issue