diff --git a/homotopy/homology.hlean b/homotopy/homology.hlean new file mode 100644 index 0000000..a0627ec --- /dev/null +++ b/homotopy/homology.hlean @@ -0,0 +1,22 @@ +import .spectrum .EM ..algebra.arrow_group ..algebra.direct_sum .fwedge ..choice .pushout ..move_to_lib ..algebra.product_group + +open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc + function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi + +namespace homology + +/- homology theory -/ +structure homology_theory.{u} : Type.{u+1} := + (HH : ℤ → pType.{u} → AbGroup.{u}) + (Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y) + (Hid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x) + (Hcompose : Π(n : ℤ) {X Y Z : Type*} (g : Y →* Z) (f : X →* Y) (x : HH n X), + Hh n (g ∘* f) x = Hh n g (Hh n f x)) + (Hsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X) + (Hsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y), + Hsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n X) + (Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f))) + (Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv ( + dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)) +) +end homology