move some files around, create folder cohomology

This commit is contained in:
Floris van Doorn 2017-07-17 13:58:36 +01:00
parent e76f1db8ae
commit 3f68115d25
9 changed files with 8 additions and 7 deletions

View file

@ -7,7 +7,7 @@ Various groups of maps. Most importantly we define a group structure
on trunc 0 (A →* Ω B), which is used in the definition of cohomology.
-/
import algebra.group_theory ..pointed ..pointed_pi eq2 homotopy.susp
import algebra.group_theory ..pointed ..pointed_pi eq2
open pi pointed algebra group eq equiv is_trunc trunc susp
namespace group

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn, Ulrik Buchholtz
Reduced cohomology of spectra and cohomology theories
-/
import .spectrum ..algebra.arrow_group .fwedge ..choice .pushout ..algebra.product_group
import ..homotopy.spectrum ..algebra.arrow_group homotopy.fwedge ..choice ..homotopy.pushout ..algebra.product_group
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Cofiber sequence of a pointed map
-/
import .cohomology .pushout
import .basic ..homotopy.pushout
open pointed eq cohomology sigma sigma.ops fiber cofiber chain_complex nat succ_str algebra prod group pushout int

View file

@ -1,4 +1,4 @@
import ..algebra.spectral_sequence .strunc .cohomology
import ..algebra.spectral_sequence ..homotopy.strunc .basic
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
cohomology group sigma unit is_conn

View file

@ -1,3 +1,4 @@
-- Author: Floris van Doorn
open eq is_trunc

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Kuen-Bang Hou (Favonia)
-/
import .homology
import .basic
open eq pointed group algebra circle sphere nat equiv susp
function sphere homology int lift

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Kuen-Bang Hou (Favonia)
-/
import .homology .sphere ..susp_product
import .basic .sphere ..homotopy.susp_product
open eq pointed group algebra circle sphere nat equiv susp
function sphere homology int lift prod smash

View file

@ -1,4 +1,4 @@
import core
import homotopy.susp homotopy.smash
open susp smash pointed wedge prod
definition susp_product (X Y : Type*) : ⅀ (X × Y) ≃* ⅀ X (⅀ Y ⅀ (X ∧ Y)) :=