move some files around, create folder cohomology
This commit is contained in:
parent
e76f1db8ae
commit
3f68115d25
9 changed files with 8 additions and 7 deletions
|
@ -7,7 +7,7 @@ Various groups of maps. Most importantly we define a group structure
|
|||
on trunc 0 (A →* Ω B), which is used in the definition of cohomology.
|
||||
-/
|
||||
|
||||
import algebra.group_theory ..pointed ..pointed_pi eq2 homotopy.susp
|
||||
import algebra.group_theory ..pointed ..pointed_pi eq2
|
||||
open pi pointed algebra group eq equiv is_trunc trunc susp
|
||||
namespace group
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn, Ulrik Buchholtz
|
|||
Reduced cohomology of spectra and cohomology theories
|
||||
-/
|
||||
|
||||
import .spectrum ..algebra.arrow_group .fwedge ..choice .pushout ..algebra.product_group
|
||||
import ..homotopy.spectrum ..algebra.arrow_group homotopy.fwedge ..choice ..homotopy.pushout ..algebra.product_group
|
||||
|
||||
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc
|
||||
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn
|
|||
Cofiber sequence of a pointed map
|
||||
-/
|
||||
|
||||
import .cohomology .pushout
|
||||
import .basic ..homotopy.pushout
|
||||
|
||||
open pointed eq cohomology sigma sigma.ops fiber cofiber chain_complex nat succ_str algebra prod group pushout int
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
import ..algebra.spectral_sequence .strunc .cohomology
|
||||
import ..algebra.spectral_sequence ..homotopy.strunc .basic
|
||||
|
||||
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
|
||||
cohomology group sigma unit is_conn
|
|
@ -1,3 +1,4 @@
|
|||
-- Author: Floris van Doorn
|
||||
|
||||
open eq is_trunc
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Author: Kuen-Bang Hou (Favonia)
|
||||
-/
|
||||
|
||||
import .homology
|
||||
import .basic
|
||||
|
||||
open eq pointed group algebra circle sphere nat equiv susp
|
||||
function sphere homology int lift
|
||||
|
|
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Author: Kuen-Bang Hou (Favonia)
|
||||
-/
|
||||
|
||||
import .homology .sphere ..susp_product
|
||||
import .basic .sphere ..homotopy.susp_product
|
||||
|
||||
open eq pointed group algebra circle sphere nat equiv susp
|
||||
function sphere homology int lift prod smash
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import core
|
||||
import homotopy.susp homotopy.smash
|
||||
open susp smash pointed wedge prod
|
||||
|
||||
definition susp_product (X Y : Type*) : ⅀ (X × Y) ≃* ⅀ X ∨ (⅀ Y ∨ ⅀ (X ∧ Y)) :=
|
Loading…
Reference in a new issue