move some files around, create folder cohomology

This commit is contained in:
Floris van Doorn 2017-07-17 13:58:36 +01:00
parent e76f1db8ae
commit 3f68115d25
9 changed files with 8 additions and 7 deletions

View file

@ -7,7 +7,7 @@ Various groups of maps. Most importantly we define a group structure
on trunc 0 (A →* Ω B), which is used in the definition of cohomology. on trunc 0 (A →* Ω B), which is used in the definition of cohomology.
-/ -/
import algebra.group_theory ..pointed ..pointed_pi eq2 homotopy.susp import algebra.group_theory ..pointed ..pointed_pi eq2
open pi pointed algebra group eq equiv is_trunc trunc susp open pi pointed algebra group eq equiv is_trunc trunc susp
namespace group namespace group

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn, Ulrik Buchholtz
Reduced cohomology of spectra and cohomology theories Reduced cohomology of spectra and cohomology theories
-/ -/
import .spectrum ..algebra.arrow_group .fwedge ..choice .pushout ..algebra.product_group import ..homotopy.spectrum ..algebra.arrow_group homotopy.fwedge ..choice ..homotopy.pushout ..algebra.product_group
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Cofiber sequence of a pointed map Cofiber sequence of a pointed map
-/ -/
import .cohomology .pushout import .basic ..homotopy.pushout
open pointed eq cohomology sigma sigma.ops fiber cofiber chain_complex nat succ_str algebra prod group pushout int open pointed eq cohomology sigma sigma.ops fiber cofiber chain_complex nat succ_str algebra prod group pushout int

View file

@ -1,4 +1,4 @@
import ..algebra.spectral_sequence .strunc .cohomology import ..algebra.spectral_sequence ..homotopy.strunc .basic
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
cohomology group sigma unit is_conn cohomology group sigma unit is_conn

View file

@ -1,3 +1,4 @@
-- Author: Floris van Doorn
open eq is_trunc open eq is_trunc

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Kuen-Bang Hou (Favonia) Author: Kuen-Bang Hou (Favonia)
-/ -/
import .homology import .basic
open eq pointed group algebra circle sphere nat equiv susp open eq pointed group algebra circle sphere nat equiv susp
function sphere homology int lift function sphere homology int lift

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Kuen-Bang Hou (Favonia) Author: Kuen-Bang Hou (Favonia)
-/ -/
import .homology .sphere ..susp_product import .basic .sphere ..homotopy.susp_product
open eq pointed group algebra circle sphere nat equiv susp open eq pointed group algebra circle sphere nat equiv susp
function sphere homology int lift prod smash function sphere homology int lift prod smash

View file

@ -1,4 +1,4 @@
import core import homotopy.susp homotopy.smash
open susp smash pointed wedge prod open susp smash pointed wedge prod
definition susp_product (X Y : Type*) : ⅀ (X × Y) ≃* ⅀ X (⅀ Y ⅀ (X ∧ Y)) := definition susp_product (X Y : Type*) : ⅀ (X × Y) ≃* ⅀ X (⅀ Y ⅀ (X ∧ Y)) :=