diff --git a/algebra/direct_sum.hlean b/algebra/direct_sum.hlean index 8596dc3..e4fdeef 100644 --- a/algebra/direct_sum.hlean +++ b/algebra/direct_sum.hlean @@ -6,9 +6,9 @@ Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ -import .quotient_group .free_commutative_group +import .quotient_group .free_commutative_group .product_group -open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops +open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops namespace group @@ -73,10 +73,10 @@ namespace group definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' := gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f) - definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) : - dirsum_elim f ∘g dirsum_incl i ~ f i := + definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) (y : Y i) : + dirsum_elim f (dirsum_incl i y) = f i y := begin - intro g, apply one_mul + apply one_mul end definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A') @@ -89,6 +89,35 @@ namespace group end + definition binary_dirsum (G H : AbGroup) : dirsum (bool.rec G H) ≃g G ×ag H := + let branch := bool.rec G H in + let to_hom := (dirsum_elim (bool.rec (product_inl G H) (product_inr G H)) + : dirsum (bool.rec G H) →g G ×ag H) in + let from_hom := (Group_sum_elim (dirsum (bool.rec G H)) + (dirsum_incl branch bool.ff) (dirsum_incl branch bool.tt) + : G ×g H →g dirsum branch) in + begin + fapply isomorphism.mk, + { exact dirsum_elim (bool.rec (product_inl G H) (product_inr G H)) }, + fapply adjointify, + { exact from_hom }, + { intro gh, induction gh with g h, + exact prod_eq (mul_one (1 * g) ⬝ one_mul g) (ap (λ o, o * h) (mul_one 1) ⬝ one_mul h) }, + { refine dirsum.rec _ _ _, + { intro b x, + refine ap from_hom (dirsum_elim_compute (bool.rec (product_inl G H) (product_inr G H)) b x) ⬝ _, + induction b, + { exact ap (λ y, dirsum_incl branch bool.ff x * y) (to_respect_one (dirsum_incl branch bool.tt)) ⬝ mul_one _ }, + { exact ap (λ y, y * dirsum_incl branch bool.tt x) (to_respect_one (dirsum_incl branch bool.ff)) ⬝ one_mul _ } + }, + { refine ap from_hom (to_respect_one to_hom) ⬝ to_respect_one from_hom }, + { intro g h gβ hβ, + refine ap from_hom (to_respect_mul to_hom _ _) ⬝ to_respect_mul from_hom _ _ ⬝ _, + exact ap011 mul gβ hβ + } + } + end + variables {I J : Set} {Y Y' Y'' : I → AbGroup} definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' := diff --git a/algebra/product_group.hlean b/algebra/product_group.hlean index 63fa749..2bd56d1 100644 --- a/algebra/product_group.hlean +++ b/algebra/product_group.hlean @@ -8,7 +8,7 @@ Constructions with groups import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group -open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function +open eq algebra is_trunc set_quotient relation sigma prod prod.ops sum list trunc function equiv namespace group @@ -61,6 +61,19 @@ namespace group infix ` ×g `:60 := group.product infix ` ×ag `:60 := group.ab_product + definition product_inl [constructor] (G H : Group) : G →g G ×g H := + homomorphism.mk (λx, (x, one)) (λx y, prod_eq !refl !one_mul⁻¹) + + definition product_inr [constructor] (G H : Group) : H →g G ×g H := + homomorphism.mk (λx, (one, x)) (λx y, prod_eq !one_mul⁻¹ !refl) + + definition Group_sum_elim [constructor] {G H : Group} (I : AbGroup) (φ : G →g I) (ψ : H →g I) : G ×g H →g I := + homomorphism.mk (λx, φ x.1 * ψ x.2) abstract (λx y, calc + φ (x.1 * y.1) * ψ (x.2 * y.2) = (φ x.1 * φ y.1) * (ψ x.2 * ψ y.2) + : by exact ap011 mul (to_respect_mul φ x.1 y.1) (to_respect_mul ψ x.2 y.2) + ... = (φ x.1 * ψ x.2) * (φ y.1 * ψ y.2) + : by exact interchange I (φ x.1) (φ y.1) (ψ x.2) (ψ y.2)) end + definition product_functor [constructor] {G G' H H' : Group} (φ : G →g H) (ψ : G' →g H') : G ×g G' →g H ×g H' := homomorphism.mk (λx, (φ x.1, ψ x.2)) (λx y, prod_eq !to_respect_mul !to_respect_mul) @@ -73,4 +86,7 @@ namespace group infix ` ×≃g `:60 := group.product_isomorphism + definition product_group_mul_eq {G H : Group} (g h : G ×g H) : g * h = product_mul g h := + idp + end group diff --git a/algebra/quotient_group.hlean b/algebra/quotient_group.hlean index ad81334..b2961ae 100644 --- a/algebra/quotient_group.hlean +++ b/algebra/quotient_group.hlean @@ -227,10 +227,10 @@ namespace group unfold qg_map, esimp, exact to_respect_mul f g h } end - definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : - quotient_group_elim f H ∘g qg_map N ~ f := + definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : G) : + quotient_group_elim f H (qg_map N g) = f g := begin - intro g, reflexivity + reflexivity end definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G') @@ -247,7 +247,7 @@ namespace group end definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : - is_contr (Σ(g : quotient_group N →g G'), g ∘g qg_map N ~ f) := + is_contr (Σ(g : quotient_group N →g G'), g ∘ qg_map N ~ f) := begin fapply is_contr.mk, -- give center of contraction @@ -442,7 +442,7 @@ definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_a end definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) : - kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f := + kernel_quotient_extension f ∘ ab_qg_map (kernel_subgroup f) ~ f := begin intro a, apply quotient_group_compute diff --git a/algebra/seq_colim.hlean b/algebra/seq_colim.hlean index 76b1491..b6824cc 100644 --- a/algebra/seq_colim.hlean +++ b/algebra/seq_colim.hlean @@ -18,14 +18,21 @@ namespace group definition seq_colim_incl [constructor] (i : ℕ) : A i →g seq_colim := qg_map _ ∘g dirsum_incl A i - definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (i + 1) (f i a)) + definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a)) (v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 := begin - induction r with r, induction r, exact sorry + induction r with r, induction r, + refine !to_respect_mul ⬝ _, + refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ) (!to_respect_inv)⁻¹ ⬝ _, + refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹)) !dirsum_elim_compute ⬝ _, + refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _, + refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _, + refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _, + exact !mul.right_inv end definition seq_colim_elim [constructor] (h : Πi, A i →g A') - (k : Πi a, h i a = h (i + 1) (f i a)) : seq_colim →g A' := + (k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' := gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k) end diff --git a/colim.hlean b/colim.hlean index e772352..7619b49 100644 --- a/colim.hlean +++ b/colim.hlean @@ -251,7 +251,7 @@ namespace seq_colim definition pshift_equiv_pinclusion {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) (n : ℕ) : psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) := - phomotopy.mk homotopy.rfl begin + phomotopy.mk homotopy.rfl begin refine !idp_con ⬝ _, esimp, induction n with n IH, { esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ }, @@ -259,7 +259,7 @@ namespace seq_colim rewrite ap_con, rewrite ap_con, refine _ ⬝ whisker_right _ !con.assoc, refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹, - xrewrite [-IH], + xrewrite [-IH], esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp, rewrite [-+con.assoc], apply whisker_right, rewrite con.assoc, apply !eq_inv_con_of_con_eq, @@ -285,7 +285,6 @@ namespace seq_colim !elim_glue omit p - definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)] : is_equiv (seq_colim_functor @g p) := adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a)) @@ -323,29 +322,60 @@ namespace seq_colim : Π(x : seq_colim f), P x := by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue - definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Π{n}, A n →* A (n+1)} - {f' : Π{n}, A' n →* A' (n+1)} (g : Π{n}, A n ≃* A' n) - (p : Π⦃n⦄, g ∘* f ~ f' ∘* g) : pseq_colim @f ≃* pseq_colim @f' := - pequiv_of_equiv (seq_colim_equiv @g p) (ap (ι _) (respect_pt g)) + definition pseq_colim_pequiv' [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)} + {f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n) + (p : Π⦃n⦄, g (n+1) ∘* f n ~ f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' := + pequiv_of_equiv (seq_colim_equiv g p) (ap (ι _) (respect_pt (g _))) + + definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)} + {f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n) + (p : Πn, g (n+1) ∘* f n ~* f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' := + pseq_colim_pequiv' g (λn, @p n) definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)} (p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' := seq_colim_equiv (λn, erfl) p - definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π{n}, A n →* A (n+1)} - (p : Π⦃n⦄, f ~ f') : pseq_colim @f ≃* pseq_colim @f' := - pseq_colim_pequiv (λn, pequiv.rfl) p + definition pseq_colim_equiv_constant' [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)} + (p : Π⦃n⦄, f n ~ f' n) : pseq_colim @f ≃* pseq_colim @f' := + pseq_colim_pequiv' (λn, pequiv.rfl) p - definition pseq_colim_pequiv_pinclusion {A A' : ℕ → Type*} {f : Π(n), A n →* A (n+1)} - {f' : Π(n), A' n →* A' (n+1)} (g : Π(n), A n ≃* A' n) - (p : Π⦃n⦄, g (n+1) ∘* f n ~ f' n ∘* g n) (n : ℕ) : + definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)} + (p : Πn, f n ~* f' n) : pseq_colim @f ≃* pseq_colim @f' := + pseq_colim_pequiv (λn, pequiv.rfl) (λn, !pid_pcompose ⬝* p n ⬝* !pcompose_pid⁻¹*) + + definition pseq_colim_pequiv_pinclusion {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)} + {f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n) + (p : Π⦃n⦄, g (n+1) ∘* f n ~* f' n ∘* g n) (n : ℕ) : psquare (pinclusion f n) (pinclusion f' n) (g n) (pseq_colim_pequiv g p) := - sorry + phomotopy.mk homotopy.rfl begin + esimp, refine !idp_con ⬝ _, + induction n with n IH, + { esimp[inclusion_pt], exact !idp_con⁻¹ }, + { esimp[inclusion_pt], rewrite [+ap_con, -+ap_inv, +con.assoc, +seq_colim_functor_glue], + xrewrite[-IH], + rewrite[-+ap_compose', -+con.assoc], + apply whisker_right, esimp, + rewrite[(eq_con_inv_of_con_eq (!to_homotopy_pt))], + rewrite[ap_con], esimp, + rewrite[-+con.assoc, ap_con, -ap_compose', +ap_inv], + rewrite[-+con.assoc], + refine _ ⬝ whisker_right _ (whisker_right _ (whisker_right _ (whisker_right _ !con.left_inv⁻¹))), + rewrite[idp_con, +con.assoc], apply whisker_left, + rewrite[ap_con, -ap_compose', con_inv, +con.assoc], apply whisker_left, + refine eq_inv_con_of_con_eq _, + symmetry, exact eq_of_square !natural_square + } + end - definition seq_colim_equiv_constant_pinclusion {A : ℕ → Type*} {f f' : Π⦃n⦄, A n →* A (n+1)} - (p : Π⦃n⦄ (a : A n), f a = f' a) (n : ℕ) : + definition seq_colim_equiv_constant_pinclusion {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)} + (p : Πn, f n ~* f' n) (n : ℕ) : pseq_colim_equiv_constant p ∘* pinclusion f n ~* pinclusion f' n := - sorry + begin + transitivity pinclusion f' n ∘* !pid, + refine phomotopy_of_psquare !pseq_colim_pequiv_pinclusion, + exact !pcompose_pid + end definition is_equiv_seq_colim_rec (P : seq_colim f → Type) : is_equiv (seq_colim_rec_unc : @@ -369,7 +399,7 @@ namespace seq_colim equiv.mk _ !is_equiv_seq_colim_rec end functor - definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)} + definition pseq_colim.elim' [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)} (g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B := begin fapply pmap.mk, @@ -379,6 +409,10 @@ namespace seq_colim { esimp, apply respect_pt } end + definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)} + (g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~* g n) : pseq_colim @f →* B := + pseq_colim.elim' g p + definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k := pmap.mk (rep0 (λn x, f x) k) begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end diff --git a/homology/homology.hlean b/homology/homology.hlean index ed8eeff..6fe727b 100644 --- a/homology/homology.hlean +++ b/homology/homology.hlean @@ -1,3 +1,11 @@ +/- +Copyright (c) 2017 Yuri Sulyma, Favonia +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Yuri Sulyma, Favonia + +Reduced homology theories +-/ + import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc @@ -10,36 +18,39 @@ namespace homology structure homology_theory.{u} : Type.{u+1} := (HH : ℤ → pType.{u} → AbGroup.{u}) (Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y) - (Hid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x) - (Hcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y), + (Hpid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x) + (Hpcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y), Hh n (f ∘* g) ~ Hh n f ∘ Hh n g) - (Hsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X) - (Hsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y), - Hsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n X) + (Hpsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X) + (Hpsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y), + Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X) (Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f))) (Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv (dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X))) + structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} := + (Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0)))) + section parameter (theory : homology_theory) open homology_theory theorem HH_base_indep (n : ℤ) {A : Type} (a b : A) : HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) := - calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ - ... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b) + calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ + ... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b) theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt) : Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x, calc Hh theory n (pmap.mk f p) x - = Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x)) - : by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)⁻¹ - ... = Hsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hsusp theory n A)⁻¹ x)) - : by exact (Hsusp_natural theory n (pmap.mk f p) ((Hsusp theory n A)⁻¹ᵍ x))⁻¹ - ... = Hh theory n (pmap.mk f q) (Hsusp theory n A ((Hsusp theory n A)⁻¹ x)) - : by exact Hsusp_natural theory n (pmap.mk f q) ((Hsusp theory n A)⁻¹ x) + = Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x)) + : by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹ + ... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x)) + : by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹ + ... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x)) + : by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x) ... = Hh theory n (pmap.mk f q) x - : by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x) + : by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x) theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x, calc Hh theory n f x @@ -56,15 +67,15 @@ namespace homology { exact Hh theory n e⁻¹ᵉ* }, { intro x, exact calc Hh theory n e (Hh theory n e⁻¹ᵉ* x) - = Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hcompose theory n e e⁻¹ᵉ* x)⁻¹ + = Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hpcompose theory n e e⁻¹ᵉ* x)⁻¹ ... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x - ... = x : by exact Hid theory n x + ... = x : by exact Hpid theory n x }, { intro x, exact calc Hh theory n e⁻¹ᵉ* (Hh theory n e x) - = Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hcompose theory n e⁻¹ᵉ* e x)⁻¹ + = Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hpcompose theory n e⁻¹ᵉ* e x)⁻¹ ... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x - ... = x : by exact Hid theory n x + ... = x : by exact Hpid theory n x } end diff --git a/homology/sphere.hlean b/homology/sphere.hlean index e5eb677..d6f789f 100644 --- a/homology/sphere.hlean +++ b/homology/sphere.hlean @@ -1,6 +1,10 @@ --- Author: Kuen-Bang Hou (Favonia) +/- +Copyright (c) 2017 Kuen-Bang Hou (Favonia). +Released under Apache 2.0 license as described in the file LICENSE. + +Author: Kuen-Bang Hou (Favonia) +-/ -import core import .homology open eq pointed group algebra circle sphere nat equiv susp @@ -13,7 +17,7 @@ section open homology_theory - theorem Hsphere : Π(n : ℤ)(m : ℕ), HH theory n (plift (psphere m)) ≃g HH theory (n - m) (plift (psphere 0)) := + theorem Hpsphere : Π(n : ℤ)(m : ℕ), HH theory n (plift (psphere m)) ≃g HH theory (n - m) (plift (psphere 0)) := begin intros n m, revert n, induction m with m, { exact λ n, isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_zero n)⁻¹ }, @@ -22,7 +26,7 @@ section ≃g HH theory n (psusp (plift (psphere m))) : by exact HH_isomorphism theory n (plift_psusp (psphere m)) ... ≃g HH theory (succ (pred n)) (psusp (plift (psphere m))) : by exact isomorphism_ap (λ n, HH theory n (psusp (plift (psphere m)))) (succ_pred n)⁻¹ - ... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hsusp theory (pred n) (plift (psphere m)) + ... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hpsusp theory (pred n) (plift (psphere m)) ... ≃g HH theory (pred n - m) (plift (psphere 0)) : by exact v_0 (pred n) ... ≃g HH theory (n - succ m) (plift (psphere 0)) : by exact isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_sub n 1 m ⬝ ap (λ m, n - m) (add.comm 1 m)) diff --git a/homotopy/cohomology.hlean b/homotopy/cohomology.hlean index 38a7e4c..8c25b70 100644 --- a/homotopy/cohomology.hlean +++ b/homotopy/cohomology.hlean @@ -189,7 +189,7 @@ structure cohomology_theory.{u} : Type.{u+1} := (Hadditive : Π(n : ℤ) {I : Type.{u}} (X : I → Type*), has_choice 0 I → is_equiv (Group_pi_intro (λi, Hh n (pinl i)) : HH n (⋁ X) → Πᵍ i, HH n (X i))) -structure ordinary_theory.{u} extends cohomology_theory.{u} : Type.{u+1} := +structure ordinary_cohomology_theory.{u} extends cohomology_theory.{u} : Type.{u+1} := (Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift pbool))) attribute cohomology_theory.HH [coercion] @@ -270,7 +270,7 @@ cohomology_theory.mk -- print has_choice_lift -- print equiv_lift -- print has_choice_equiv_closed -definition ordinary_theory_EM [constructor] (G : AbGroup) : ordinary_theory := -⦃ordinary_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := EM_dimension G ⦄ +definition ordinary_cohomology_theory_EM [constructor] (G : AbGroup) : ordinary_cohomology_theory := +⦃ordinary_cohomology_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := EM_dimension G ⦄ end cohomology diff --git a/homotopy/spectrum.hlean b/homotopy/spectrum.hlean index 03e3e39..9ed3f7d 100644 --- a/homotopy/spectrum.hlean +++ b/homotopy/spectrum.hlean @@ -373,13 +373,17 @@ namespace spectrum definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* := Ω[k] (X (n +' k)) - definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (k : ℕ) (n : N) : + definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Ω[k] (X n) →* Ω[k+1] (X (S n)) := !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n) definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : spectrify_type_term X n k →* spectrify_type_term X n (k+1) := - spectrify_type_fun' X k (n +' k) + spectrify_type_fun' X (n +' k) k + + definition spectrify_type_fun_zero {N : succ_str} (X : gen_prespectrum N) (n : N) : + spectrify_type_fun X n 0 ~* glue X n := + !pid_pcompose definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* := pseq_colim (spectrify_type_fun X n) @@ -393,20 +397,28 @@ namespace spectrum ... ≡ Y n -/ + definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : + spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) := + begin + refine _ ⬝* !ap1_pcompose⁻¹*, + apply !pwhisker_right, + refine !to_pinv_pequiv_MK2 + end + definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) : spectrify_type X n ≃* Ω (spectrify_type X (S n)) := begin refine !pshift_equiv ⬝e* _, - transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (S n +' k)), + transitivity pseq_colim (λk, spectrify_type_fun' X (S n +' k) (succ k)), fapply pseq_colim_pequiv, { intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ }, - { intro k, apply to_homotopy, + { exact abstract begin intro k, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _, refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left, refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy, - exact !glue_ptransport⁻¹* }, + exact !glue_ptransport⁻¹* end end }, refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*, - refine pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*), + exact pseq_colim_equiv_constant (λn, !spectrify_type_fun'_succ), end definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N := @@ -419,21 +431,31 @@ namespace spectrum -- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem? definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) : X n ≃* Ω[k] (X (n +' k)) := - by induction k with k f; reflexivity; exact f ⬝e* loopn_pequiv_loopn k (equiv_glue X (n +' k)) - ⬝e* !loopn_succ_in⁻¹ᵉ* + by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k)) + ⬝e* !loopn_succ_in⁻¹ᵉ*) + + definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) : + (equiv_gluen X n (k+1))⁻¹ᵉ* ~* + (equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in := + begin + refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv + end definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X := begin fapply smap.mk, { intro n, exact pinclusion _ 0 }, - { intro n, apply phomotopy_of_psquare, refine !pid_pcompose⁻¹* ⬝ph* _, + { intro n, apply phomotopy_of_psquare, refine !pid_pcompose⁻¹* ⬝ph* _, - --pshift_equiv_pinclusion (spectrify_type_fun X n) 0 - refine _ ⬝v* _, - rotate 1, exact pshift_equiv_pinclusion (spectrify_type_fun X n) 0, --- refine !passoc⁻¹* ⬝* pwhisker_left _ _ ⬝* _, - exact sorry -} + refine !passoc ⬝* pwhisker_left _ (pshift_equiv_pinclusion (spectrify_type_fun X n) 0) ⬝* _, + refine !passoc⁻¹* ⬝* _, + refine _ ◾* (spectrify_type_fun_zero X n ⬝* !pid_pcompose⁻¹*), + refine !passoc ⬝* pwhisker_left _ !pseq_colim_pequiv_pinclusion ⬝* _, + refine pwhisker_left _ (pwhisker_left _ (ap1_pid) ⬝* !pcompose_pid) ⬝* _, + refine !passoc ⬝* pwhisker_left _ !seq_colim_equiv_constant_pinclusion ⬝* _, + apply pinv_left_phomotopy_of_phomotopy, + exact !pseq_colim_loop_pinclusion⁻¹* + } end definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} @@ -442,7 +464,9 @@ namespace spectrum fapply smap.mk, { intro n, fapply pseq_colim.elim, { intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) }, - { intro k, apply to_homotopy, exact sorry }}, + { intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _, + refine !passoc ⬝* _, apply pwhisker_left, + refine !passoc ⬝* _, exact sorry }}, { intro n, exact sorry } end diff --git a/move_to_lib.hlean b/move_to_lib.hlean index 340eb82..14bf911 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -180,6 +180,13 @@ namespace group definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b := isomorphism_of_eq (ap F p) + definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) := + calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d) + ... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹ + ... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c) + ... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d) + ... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹ + end group open group namespace function